
Linear Algebra Study Guide

1: Systems of Linear Systems and Matrices

1.1: Introduction to Systems of Linear Equations
Consistency

All linear systems have 0, 1, or infinite solutions.

Augmented Matrices

An augmented matrix is the matrix form of a linear system.

The elementary row operations are:
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 Hint

Your PDF reader may have an outline tool! I have embedded heading bookmarks
for each chapter, subchapter, and sub-subchapter, so use them to study more
efficiently.

A system is consistent if it has at least one ordered n-tuple solution.
Inconsistent if it has no solutions.

⎡⎢⎣s11 s12 s13

s21 s22 s23

. . . . . . . . .
sn1 sn2 sn3
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Row Echelon Form

General Solution

For example: x = 2s − t + 3, y = s, z = t

1.2: Gaussian Elimination
Gaussian-Jordan Elimination

Gaussian Elimination creates only row echelon form, the extra steps are Gauss-Jordan
Elimination and creates reduced row echelon form

Multiply row by a constant
Add one row to another
Swap two rows

Row echelon form follows these rules:
The first nonzero number is 1 (the leading 1).
All zero rows are at the bottom of the matrix.
In any two successive non-zero rows, the leading 1 in the lower one must
occur further to the right.
Row echelon forms are not unique.

Reduced row echelon form requires one more rule:
The column of a leading 1 has zeroes in all other rows
Reduced row echelon forms have pivot positions.

These pivot positions are the leading ones. The nonzero elements that
were in those spaces in their non-row echelon forms are pivots.

When there are infinite solutions, the solutions may be expressed as parametric
equations.

Solve the equations for one variable, express the rest as free variables

A way to reduce a matrix to reduced row echelon form
Step 1: Move the row with the furthest-left element to the top.
Step 2: Reduce the leading element of the top row to 1, by dividing the row by
a number.
Step 3: Make the elements below the new leading 1 to 0 by multiplying the
leading 1's row by a number and adding the row to the rows below
Step 4: Repeat Steps 1-3 for the next row down.
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Homogenous Linear Systems

1.2.1  Free Variable Theorem: If a homogenous linear system has n unknowns and r
nonzero rows in its reduced row echelon form, then it has n − r free variables.

1.2.2  If a homogenous linear system has more unknowns than nonzero lines, it has
infinitely many solutions.

Back-Substitution

1.3. Matrices and Matrix Operators
Row & Column Vectors

Square Matrices

Matrix Operations

Homogenous linear systems are of the format:

⎡⎢⎣x11 x12 … 0
x21 x22 … 0
x31 x32 … 0
… … … 0

⎤⎥⎦All homogenous linear systems have the trivial solution x, y, ⋯ = 0. All other
solutions are nontrivial. A homogenous linear system can either have no solutions
or infinite solutions.

This technique can solve a system in row echelon form.
Step 1. Solve all nonzero lines for their leading variables.
Step 2. Successively substitute each line into its preceding line.

A matrix with only one row is called a row vector.
A matrix with only one column is called a column vector.

A matrix with n × n dimensions is called a square matrix.
The diagonal from the top left to bottom right is called the main diagonal.

The sum of these values is called the trace, tr().

Matrices are only equal if their elements are equal, and dimensions are equal.
The sum and difference of matrices is each corresponding element being added or
subtracted with the other matrix's corresponding element.
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Partitions and Submatrices

1.3.1  For a square matrix A and column vector B of the same height as A, then Ax can
be written as each element of B multiplying the corresponding column of A, summed.

Example:

As such, only matrices with the same dimensions can be added or subtracted.

The product of two matrices is found by multiplying each element of a row of the
first matrix by each element of the column of the second matrix, piecewise. The
products are added.

The product of a matrix and a scalar is each element of the matrix being
multiplied by the scalar.
To determine if two matrices can be multiplied, this rule must be followed:

Let two matrices, A and B, be multiplied.
Write their dimensions like so:

3 × 4 6 × 3

If the outside values are equal, the multiplication is valid. The inner
values are the size of the resultant matrix.
Therefore, this multiplication is valid, and the resulting matrix will be of
dimensions 4 × 6.
^ This is known as the row-column rule.

Matrices can be partitioned into submatrices by inserting lines in between columns
or rows.
This can be used to find the products of only specific columns or lines of two
matrices.

Let A be a matrix of size 4 × 8, and B a matrix of size 5 × 4. To find Row 3 of
the resultant AB, the 3rd row of A can be partitioned and multiplied by B.
As such:

To find the ith row of AB: (ith row of A)B
To find the jth column of AB: A(jth column of B)

=

2 − 1 + 3 =

⎡⎢⎣−1 3 2
1 2 −3

2 1 −2

⎤⎥⎦⎡⎢⎣ 2
−1

3

⎤⎥⎦ ⎡⎢⎣ 1
−9

−3

⎤⎥⎦⎡⎢⎣−1
3
2

⎤⎥⎦ ⎡⎢⎣3
2
1

⎤⎥⎦ ⎡⎢⎣ 2
−3
−2

⎤⎥⎦ ⎡⎢⎣ 1
−9
−3
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This can be done with larger matrices to compute columns individually, if the column
vector has multiple columns. This example calculated the first column of the resulting
matrix.

Column-Row Expansion

By partitioning two multiply-able matrices A and B into A's component column
vectors and B's component row vectors, the product can be calculated easily.

AB = c1r1 + c2r2 … cnrn

As such, there are five total ways to calculate matrix multiplication.

Note that matrices cannot be divided, only multiplied by an inverse.

Linear System to Matrix

The coefficients of a linear system matrix can be separated into a column vector
multiplied by the remaining matrix. That column vector is called the coefficient
matrix.

Thus, a linear system can be represented by Ax = b, where A is the coefficient matrix.

Transposes

The transpose of a matrix A with dimensions m × n has the rows and columns
reversed, with dimensions n × m. Row 1 of A becomes Column 1 of A′, Column 1 of A
becomes Row 1 of A′, and so on. The transpose of square matrices can be obtained by
reflecting values across the main diagonal. The main diagonal remains unchanged.

The trace of a square matrix is the sum of the values on the main diagonal. There is no
trace if the matrix is not a square matrix.

1.4: Inverses and Algebraic Properties
Properties of Matrix Addition

1. Entry by entry (the basic way, Definition 5 in textbook)
2. Row-column method (basically just entry by entry, Formula (5) in textbook)
3. Column by column (1.3.1, Formula (6) in textbook)
4. Row by row (Formula (7) in textbook)
5. Column-row expansion (Formula (11) in textbook)
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1.4.1  Properties of matrix arithmetic, where A,B are matrices and a, b are scalars
(a) A + B = B + A

(b) A + (B + C) = (A + B) + C

(c) A(BC) = (AB)C

(d) A(B + C) = AB + AC

(e) (B + C)A = BA + CA

(f) A(B − C) = AB − AC

(g) (B − C)A = BA − CA

(h) a(B + C) = aB + aC

(i) a(B − C) = aB − aC

(j) (a + b)C = aC + aB

(k) (a − b)C = aC − aB

(l) a(bC) = (ab)C

(m) a(BC) = (aB)C = B(aC)

Properties of Matrix Multiplication

The commutative law for multiplication DOES NOT APPLY with matrices. Eg,
AB ≠ BA. It can fail for one of these reasons:

In general, matrices do not commute unless under special circumstances.

Zero Matrices

1.4.1  Properties of matrix arithmetic, where A,B are matrices and a, b are scalars
(a) A + 0 = A

(b) A − 0 = A

(c) A − A = 0

(d) 0(A) = 0

(e) If c(A) = 0, c = 0 or A = 0

Note that the following two arithmetic rules do not apply in matrix arithmetic:

AB is possible but BA isn't due to dimensional reasons (eg. 1 × 3 and 3 × 4).
Both AB and BA are possible, but have different sizes (eg. 3 × 4 and 4 × 3)
Both AB and BA are possible and have the same size, but different values.

A matrix with all-zero elements is a zero matrix.
Usually, the size is irrelevant, so it's denoted by 0.

If ab = ac and a ≠ 0, b = c.
If ab = 0 (note 0 ≠ 0), at least one of ab is 0.
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Identity Matrices

A square matrix with only 1s on the main diagonal and 0s everywhere else is the
identity matrix. It is denoted by I. An identity matrix of a specific size is In for the
n × n identity matrix.

Any matrix A of dimension m × n follows AIn = A and ImA = A.

1.4.3  If R is the reduced row echelon form of a square matrix A, then R has either one
row of zeroes or R is the identity matrix I.

Inverse Matrices

For a matrix A, an inverse matrix B is such that AB = I and BA = I. If there is no such
matrix B, A is not invertible, and is singular.

An invertible matrix has only one inverse.

1.4.5  A 2 × 2 matrix is only invertible if its determinant ≠ 0. If so, the inverse is given
by the formula

A−1 =
1

ad − bc
[ ]

The determinant of a 2 × 2 matrix is denoted by det(A) = ad − bc or

= ad − bc

You will learn a formula for a more universal determinant soon, so don't get too
attached.

1.4.6  If A and B are invertible matrices of the same size, (AB)−1 = A−1B−1. This
applies to combinations of invertible matrices of any amount.

Matrix Powers

(A)0 = I and (A)n = AAA. . . .An for square matrix A

1.4.7  If A is invertible and n is a nonnegative integer, then:
(a)  A−1 is invertible and (A−1)−1 = A.

Thus, the zero matrix fills the position of 0 from arithmetic (cancellation in
multiplication) and the identity matrix fills the position of 1 (unchanging in
multiplication).

d −b

−c a∣a b
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(b)  An is invertible and (An)−1 = A−n = (A−1)n.

(c)  kA is invertible for any nonzero scalar k, and (kA)−1 = k−1A−1.

Matrix Polynomials

In the form p(x) = a0 + a1x + a2x
2+. . . anxn, the matrix p(A) of size m x m is

p(A) = a0I + a1A + a2A
2+. . . anAn.

Properties of Transposition

1.4.8  If A and B are matrices and k is a scalar:
(a)  (AT )T = A

(b)  (A + B)T = AT + BT

(c)  (A − B)T = AT − BT

(d)  (kA)T = kAT

(e)  (AB)T = BTAT

The transpose of a product of any number of matrices is the product of the transposes
in the reverse order.

If A is an invertible matrix, then AT  is also invertible, and (AT )−1 = (A−1)T .

1.5: Elementary Matrices and Inverse Matrices
Matrices A and B are said to be row equivalent if either (hence each) can be obtained
from the other by a sequence of elementary row operations.

Elementary Matrices

A matrix E is called an elementary matrix if it can be obtained from an identity matrix
by performing a single elementary row operation.

1.5.1  If the elementary matrix E results from performing a certain row operation on
Im and
if A is an m × n matrix, then the product EA is the matrix that results when this same
row operation is performed on A.

Inverse operations are the opposite of the 3 elementary operations.

Multiply row i by 1
c

Interchange rows i and j
Add −c times row i to row j
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1.5.2  All elementary matrices are invertible, and the inverted matrix is also an
elementary matrix.

1.5.3  If A is an n×n matrix, then the following statements are equivalent, that is, all
true or
all false.
(a) A is invertible.
(b) Ax = 0 has only the trivial solution.
(c) The reduced row echelon form of A is In.
(d) A is expressible as a product of elementary matrices

Inverting Matrices

To find the inverse of an invertible matrix A, find a sequence of elementary row
operations that reduces A to the identity and then perform that same sequence of
operations on In to obtain A−1 .

How to know if a matrix is uninvertible: While reducing A to In, a row of 0s will
appear.

1.6: More on Invertible Matrices
Properties of Invertible Matrices

1.6.3  If A is an n×n matrix:
(a) If B is a square matrix satisfying BA = 1, then B = A−1.
(b) If B is a square matrix satisfying AB = 1, then B = A−1.

Hence, adding two more statements to 1.5.3 

1.6.4  If A is an n×n matrix, then the following statements are equivalent, that is, all
true or
all false.
(a) A is invertible.
(b) Ax = 0 has only the trivial solution.
(c) The reduced row echelon form of A is In.
(d) A is expressible as a product of elementary matrices
(e) Ax = b is consistent for every n × 1 matrix b.
(f) Ax = b has exactly one set of solutions for every n × 1 matrix b.

1.6.5  If A and B are n×n matrices of the same size, if AB is invertible, A and B are
also invertible.
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Determining Consistency by Elimination

For a matrix A of size n x n, append column matrix B with elements b1, b2, . . . bn and
reduce the left side to an identity matrix, manipulating B elements accordingly. Final
result is in the form of parametric equations of arbitrary variables b1, b2, … .

1.7: Diagonal, Triangular, and Symmetric Matrices
Diagonal Matrices

A square matrix where all items off the main diagonal are 0.

Only invertible if all diagonal entries are nonzero

D−1 = 1/d1, 1/d2, . . . where all items off the diagonal remain unchanged.

Dk = dk1, dk2, . . . where all items off the diagonal remain unchanged. k is any positive
integer.

For DA, where D is a diagonal matrix and A is any matrix:

For AD, where D is a diagonal matrix and A is any matrix:

Triangular Matrices

(Square matrix)

Upper triangular matrix: All entries below EXCLUDING the main diagonal are zero
Lower triangular matrix: All entries above EXCLUDING the main diagonal are zero

Let D be a diagonal matrix with diagonal entries d1, d2, … , dn, and let A be an
m × n matrix with entries aij.
The product DA is computed by multiplying each row of A by the corresponding
diagonal entry of D. Specifically, the i-th row of DA is given by:

( )d1ai1 d2ai2 ⋯ dnain

The product AD is computed by multiplying each column of A by the
corresponding diagonal entry of D. Specifically, the j-th column of AD is given by:

⎛⎜⎝ d1a1j

d2a2j

⋮
dmamj
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Diagonal matrices are both upper and lower triangular.

1.7.1  Properties of triangular matrices
(a) The transpose of an upper triangular matrix is lower, and vice versa
(b) Product of two lower triangular matrices is lower, and product of two upper is
upper
(c) A triangular matrix is invertible if and only if its diagonal entries are all nonzero
(d) Inverse of a lower is lower, and inverse of upper is upper

Symmetric Matrices

A square matrix A is symmetric if A = AT .

A simple way to recognize symmetry is to search for an analogue of an element across
the main diagonal. Items on the diagonal are arbitrary, but there must be symmetry for
everything else. Thus, if A is symmetric, Aij = Aji.

1.7.2  Properties of symmetric matrices. A and B are symmetric matrices of the same
size and k is any scalar.
(a) AT  is symmetric.
(b) A + B and A − B are symmetric.
(c) kA is symmetric.
(d) However, AB is NOT always symmetric. (AB)T = AB if and only if
AB = BA, ∴ A and B commute. 

Not all symmetric matrices are invertible, but if one is invertible, A−1 is also
symmetric.

1.7.3  The product of two symmetric matrices is symmetric if and only if they
commute.

Note: AAT  and ATA for any matrix A are important in many applications of linear
algebra. These two products are always guaranteed to be symmetric.

1.7.5  If A is an invertible square matrix, then AAT  and ATA are also invertible.

1.8: Introduction to Linear Transformations
Rn is the set of all ordered n-tuples of real numbers. Each element of Rn is called a
vector and referred to in bold lowercase. Each ordered n-tuple can be expressed as a
column vector.
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(s1, s2, . . . sn) is called comma delimited form.

 is the column vector form.

Let ei be the vector in Rn with a 1 in the i position and 0s everywhere else. Eg. e2 =
(0, 1, . . . 0)

All vectors e1, e2, . . . , en are the standard basis vectors for Rn, n defined for positive
integers.

All other vectors of Rn can be expressed as a linear combination of the basis vectors.

Functions and Transformations

For b = f(a): b is the image of f(a), f(a) is the value of f at a, the set A is the domain of f
(all values a is defined for), and the set B is the codomain of f (all values f(a) is defined
for). The range is a subset of the codomain (all values f(a) can actually be).

Let domain be Rn and codomain be Rm, sets of vectors. The function f maps from Rn to
Rm: f : Rn → Rm

Matrix Transformations

This is about transforming Rn to Rm, written T : Rn → Rm.

Let the goal be to transform x into w (both are column vectors). This can be denoted
by:
w = Ax which becomes A : Rn → Rm. This is used when the domain and codomain
need to be clear.

When specifying domain and codomain is not important: w = TA(x). This can be

expressed in schematic form as x
TA

⟶ w. The TA is a stand-in for multiplication by a
matrix A.

If the A in TA is a 0 matrix, T0(x) = 0x = 0. T0 is called the zero transformation.

If I is the n × n identity matrix, TI(x) = Ix = x. The original column vector is
unchanged. TI  is called the identity operator on Rn.

Properties of Matrix Transformations

1.8.1  For every matrix A, the transformation TA : Rn → Rm has the following
properties for all vectors u and v, and all scalars k:

⎡⎢⎣s1

s2

. . .
sn

⎤⎥⎦ Last revised 3/18/25, 6:02 PM
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(a) TA(0) = 0

(b) TA(ku) = kTA(u) [Homogeneity property]

(c) TA(u + v) = TA(u) + TA(v) [Additivity property]

(d) TA(u − v) = TA(u) − TA(v)

1.8.2  T : Rn → Rm is a valid matrix transformation if and only if these relationships
are true for all vectors u and v, and all scalars k:
(a) T (u + v) = T (u) + T (v) [Additivity property]

(b) T (ku) = kT (u) [Homogeneity property]

These conditions are called linearity conditions. Any transformation that satisfies
these conditions is called a linear transformation.

1.8.3  Every linear transformation from Rn to Rm is a matrix transformation, and vice
versa. In other words, only for transformations from Rn to Rm, matrix transformations
and linear transformations are synonymous.

1.8.4  If TA : Rn → Rm and TB : Rn → Rm are matrix transformations, and if
TA(x) = TB(x) for every vector x in Rn, A = B.

2: Determinants

2.1: Determinants by Cofactor Expansion
Cofactor Expansion

2 × 2 matrices are invertible only if ad − bc ≠ 0, where det(A) = ad − bc or

= ad − bc

The minor of an element aij is the determinant of the submatrix that results when row
i and column j are deleted. The cofactor of aij is (−1)i+jMij.

Pattern that decides if the cofactor is positive or negative times the minor:

2.1.1  If A is an n x n matrix, then regardless of which row or column of A is chosen,
the number obtained by multiplying the entries in that row or column by the
corresponding cofactors and adding the resulting products is always the same.∣a b

c d∣⎡⎢⎣+ − + …
− + − …
+ − + …

⋮ ⋮ ⋮ ⋱

⎤⎥⎦Last revised 3/18/25, 6:02 PM
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By any row or column of A, multiplying by corresponding cofactors and adding them
together is called the determinant, and the sums of each column and row themselves
are called cofactor expansions.

2.1.2  If A is an n x n triangular matrix, det(A) is the product of the diagonal entries.

2.2: Evaluating Determinants by Row Reduction
2.2.1  If A is an n x n matrix, det(A) = 0 if there is a column or row of 0s.

2.2.2  det(A) = det(AT ).

Most theorems work for columns and rows.

2.2.3  For square matrix A:
(a) If B is the matrix that results when a single row or column of A is multiplied by a
scalar k, then det(B) = k det(A).
(b) If B is the matrix that results when two rows or columns of A are interchanged,
then det(B) = −det(A).
(c) If B is the matrix that results when a multiple of one row/column of A is added to
another row/column of A, then det(B) = det(A)

Elementary Matrices

2.2.4  For square elementary matrix E:
(a) If E is the matrix that results when a single row of In is multiplied by a nonzero
number k, then det(E) = k.
(b) If E is the matrix that results from interchanging two rows of In, then det(E) = −1.
(c) If E is the matrix that results when a multiple of one row of In is added to another
row of In, then det(E) = 1.

2.2.5  If A is an n x n matrix with two proportional columns or rows, det(A) = 0.

2.3: Properties of Determinants; Cramer's Rule
2.3.1  If A is an n x n matrix and k is a scalar, det(kA) = kndet(A).

det(A + B) ≠ det(A) + det(B)

2.3.2  Let A,B,  and C be n × n matrices that differ only in a single row,

say the rth,  and assume that the rth row of C can be obtained by adding corresponding

entries in the rth rows of A and B.  Then

det(C) = det(A) + det(B)

Last revised 3/18/25, 6:02 PM
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The same result holds for columns.

2.3.3  A square matrix A is invertible if and only if det(A) ≠ 0.

2.3.4  For two matrices AB of the same size, det(AB) = det(A) ⋅ det(B).

2.3.5  If A is invertible, det(A−1) = 1
det(A) .

The transpose of the matrix of cofactors of A is the adjoint, adj(A).

2.3.6  A−1 = 1
det(A) adj(A).

2.3.7  Cramer's Rule: If Ax = b is a system of linear equations where det(A) ≠ 0, the
system has a unique solution. The solution is xj = det(A)

det(Aj)
 for every column j, where Aj

is the matrix obtained by replacing the jth column of A with the column vector b. (It is
usually more efficient, for n > 3, to solve systems with n unknowns and n equations, to
use Gauss-Jordan elimination)

2.3.8  For square matrix A, all of these statements are equivalent:
(a) A is invertible.
(b) Ax = 0 has only the trivial solution.
(c) The reduced row echelon form of A is In.
(d) A can be expressed as a product of elementary matrices.
(e) Ax = b is consistent for every n x 1 matrix b.
(f) Ax = b has exactly one solution for every n x 1 matrix b.
(g) det(A) ≠ 0.

3: Euclidean Vector Spaces

3.1: Vectors in 2-Space, 3-Space, and n-Space
Vector Notation/Formatting

Vectors are in bold, a, b, c, d, …, scalars are lowercase italics, a, b, c, d, …

For a vector v with initial point A and terminal point B, v = AB

Vectors are equivalent if and only if they have the same direction and magnitude

Direction of arrow signifies direction
Length of arrow signifies magnitude
Tail of arrow is the initial point
Tip of arrow is the terminal point

−→
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A vector with its initial and terminal points at the same point is called the zero vector,
0. You can make up its direction to whatever is convenient

Vector Addition

Parallelogram Rule
For two vectors v and w with coinciding initial points, take the vectors as sides of a
parallelogram, and the sum v + w is equal to the vector that shares an initial point at v
and w and through the parallelogram's diagonal to the opposing vertex.

Triangle Rule
For two vectors v and w with w's initial point at v's terminal point, the sum v + w is
equal to the vector from the tip of v (initial point) to the tail of w (terminal point).

v + w is commutative, v + w = w + v. This means you can slap together v and w in
any order or format you want to take advantage of the parallelogram or triangle rules.

v + w + x is associative, v + (w + x) = (v + w) + x. Use tip to tail when dealing with
>2 vectors.

Vector Subtraction

The same as addition but you flip the negative vector around.

Scalar Multiplication

Works as expected, multiplies the vector's length by that scalar. kv = 0 for k = 0 or
v = 0.

Collinearity

Since translating a vector around a vector space technically isn't changing it, being
collinear = being parallel. The zero vector is also parallel to all vectors.

Components

When working with vectors that do not start at the origin, we can define a vector with
specific initial and terminal points.

Let P1P2 be the vector defined by initial and terminal point P1(x1, y1),P2(x2, y2)

The components of the vector P1P2 can be calculated by P1P2 = (x2 − x1, y2 − y1). Can
be extended to 3-vectors and so on.

−→

−→−→
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n-Space

An ordered n-tuple is a sequence of n real numbers. The set of all ordered n-tuples is
the real n-space, Rn.

(s1, s2, . . . sn) is called comma delimited form.

 is the column vector form.

3.1.1  If u, v,  and w are factors in Rn, 0 is a zero vector,  and if k and m are scalars:

(a) u + v = v + u

(b) (u + v) + w = u + (v + w)

(c) u + 0 = 0 + u = u

(d) u + (−u) = 0

(e) k(u + v) = ku + kv

(f) (k + m)u = ku + mu

(g) k(mu) = (km)u

(h) 1u = u

3.1.2  If v is a factor in Rn, 0 is a zero vector,  and k is a scalar:

(a) 0v = 0

(b) k0 = 0

(c) (−1)v = −v

The reason these properties are nice is because calculations on vectors can be done
without doing them component-wise.

Linear Combinations

If w is a vector in Rn, then w is said to be a linear combination of the vectors
v1, v2, … , vr in Rn if it can be expressed in the form

w = k1v1 + k2v2 + ⋯ + krvr

where k1, k2, … , kr are scalars. These scalars are called the coefficients of the linear
combination. In the case where n = 1, the formula becomes w = k1v1. As such, a linear
combination of a single vector becomes just a scalar multiple of that vector.

3.2: Norm, Dot Product, and Distance

⎡⎢⎣s1

s2

. . .
sn
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The norm of a vector v is denoted by ∥v∥. It is also called the length or magnitude, and

is computed through ∥v∥ = √v2
1 + v2

2 + v3
3 + ⋯ + v2

n for all components v of v.

3.2.1  If v is a factor in Rn and k is a scalar:

(a) ∥v∥ ≥ 0

(b) ∥v∥ = 0 if and only if v = 0

(c) v = −v

Unit Vectors

A vector of norm 1 is a unit vector. Make a unit vector by multiplying a vector by the
reciprocal of its norm. As such, a unit vector is defined as u = 1

∥v∥ v, where u and v
share the same direction. This process is called normalization.

The standard unit vectors are vectors in the positive cardinal directions of the
coordinate axes. For example, standard unit vectors of R2 are i = (1, 0) and j = (0, 1).
All vectors in Rn can be expressed as a linear combination of standard unit vectors.

Distance

For two points u, v in Rn, the distance between u, v is

d(u, v) = ∥u − v∥ = √(u1 − v1)2 + (u2 − v1)2 + ⋯ + (un − vn)2

Dot Product

Takes two vectors and finds their scalar product. u ⋅ v = ∥u∥∥v∥ cos θ, or you can
multiply each component together and add them up, like u ⋅ v = u1v1 + u2v2 + …unvn

for u = (u1,u2, …un) and v = (v1, v2, … vn).

Useful information about θ if you know the dot product:
θ is acute if u ⋅ v > 0.
θ is obtuse if u ⋅ v < 0.
θ is 90 deg if u ⋅ v = 0.

If u = v, there is a special case v ⋅ v = ∥v∥2, and ∥v∥ = √v ⋅ v.

3.2.2  Algebraic properties of dot products. If u, v,  and w are vectors in Rn, and k is a
scalar, then:
(a) u ⋅ v = v ⋅ u [Symmetry property]

(b) u ⋅ (v + w) = u ⋅ v + u ⋅ w [Distributive property]

(c) k(u ⋅ v) = (ku) ⋅ v [Homogeneity property]

(d) v ⋅ v ≥ 0 and v ⋅ v = 0 if and only if v = 0 [Positivity property]
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3.2.3  Additional properties of dot products. If u, v,  and w are vectors in Rn, and k is a
scalar, then:
(a) 0 ⋅ v = v ⋅ 0 = 0

(b) (u + v) ⋅ w = u ⋅ w + v ⋅ w

(c) u ⋅ (v − w) = u ⋅ v − u ⋅ w

(d) k(u ⋅ v) = u ⋅ k(v)

Cauchy-Schwarz Inequality

Solving the dot product for θ:
θ = arccos( u⋅v

∥u∥∥v∥ )

This only holds true for −1 ≤ u⋅v
∥u∥∥v∥ ≤ 1 because arccos is only defined for that range.

Conveniently, the Cauchy-Schwarz Inequality proves the inequality always holds for
nonzero Rn vectors.

3.2.4  Cauchy–Schwarz Inequality: If u = (u1,u2, …un) and v = (v1, v2, … vn) are
vectors in Rn,

|u ⋅ v| ≤ ∥u∥∥v∥

or in component form,

|u1v1 + u2v2 + ⋯ + unvn| ≤ (u2
1 + u2

2 ⋯ + u2
n)

1
2 (v2

1 + v2
2 ⋯ + v2

n)
1
2

Don't get too attached, there's a more general form later.

Geometry in R^n

You know that: (a) the sum of two side lengths of a triangle is at least as large as the
third side, and (b) the shortest distance between two points is a straight line. Here are
those for Rn.

3.2.5  If u, v,  and w are vectors in Rn,
(a) ∥u + v∥ ≤ ∥u∥ + ∥v∥ [Triangle inequality for vectors]

(b) distance(u, v) ≤ distance(u, w) + distance(w, v) [Triangle inequality for distances]

This is a version of the typical fact that for parallelograms, the sum of the squares of
the diagonals is equal to the sum of the squares of the four sides.

3.2.6  If u and v are vectors in Rn, then ∥u + v∥2 + ∥u − v∥2 = 2(∥u∥2 + ∥v∥2).

So basically, even though R4+ is a murky dark soup that destroys your brain if you
think too hard about it, it's not that different from R2 and R3, and many properties
generalize.
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Important relationship between the norm and dot product:
3.2.7  If u and v are vectors in Rn, then u ⋅ v = 1

4 ∥u + v∥2 − 1
4 ∥u − v∥2.

Dot Products & Matrix Multiplication

Dot products can be seen as matrix multiplication. How u and v are arranged depends
on if they're expressed as column or row vectors. Arrange vectors or take their
transposes accordingly to make sure matrix multiplication is valid.

Essentially this:

u ⋅ v = u ⋅ ATv

and

u ⋅ Av = ATu ⋅ v

3.3: Orthogonality
Orthogonality

Two nonzero vectors u, v in Rn are orthogonal (perpendicular) if u ⋅ v = 0. The zero
vector in Rn is orthogonal to every vector in Rn.

The normal is a way of signifying the slope and inclination of a vector. It is a nonzero
vector n orthogonal to the line/plane.

3.3.1  If a and b are constants, and both are not zero, the equations for n in R2 and R3

are:
(a) ax + by + c = 0

(b) ax + by + cz + d = 0

where (a, b) and (a, b, c) is the line/plane of the normal.

3.3.2  Projection Theorem: If u and a are vectors in Rn, and if a ≠ 0, then u can be
expressed in exactly one way in the form u = w1 + w2, where w1 is a scalar multiple of
a and w2 is orthogonal to a.

You can call w1 the orthogonal projection of u along a or vector component of u
along a, and w2 vector component of u orthogonal to a.

Basically,

projau =
u ⋅ a

∥a∥2
a (vector component of u along a)
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u − projau = u −
u ⋅ a

∥a∥2
a (vector component of u orthogonal to a)

Norm of a Projection

The norm of a projection can be derived from the equations above, and is

∥projau∥ =
|u ⋅ a|

∥a∥

Using the conventional definition of a dot product, you can also define it as

∥projau∥ = ∥u∥| cos θ |

3.3.3  Pythagorean Theorem for Rn: For two orthogonal vectors in Rn,
∥u + v∥2 = ∥u∥2 + ∥v∥2.

There's also some extra stuff but I have no idea what it's talking about so seek it out if
you wish

3.4: Geometry of Linear Systems
Vector and Parametric Equations

3.4.1  For a line with a point x0 that is parallel to the vector v, the equation of that line
is x = x0 + tv for a scalar t.

3.4.2  For a plane with a point x0 that is parallel to the noncollinear vectors v1, v2, the
equation of the plane is x = x0 + t1v1 + t2v2

These equations are called vector forms. When points are substituted in to solve for t,
it is called the parametric form.

Lines through Two Points

The two-point vector equations are x = x0 + t(x1 − x0) or x = (1 − t)x0 + tx1. They
define the line segment from x0 to x1.

3.4.3  For a m × n matrix A, the set of solutions of the homogenous linear system
Ax = 0 consists of all vectors in Rn that are orthogonal to every row vector in A.

3.5: Cross Product
Find cross product a × b in 3-space by making a matrix such that
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and take the determinant.

3.5.1  For 3-space vectors u, v, w:
(a)  u ⋅ (u × v) = 0 [u × v is orthogonal to u]

(b)  v ⋅ (u × v) = 0 [u × v is orthogonal to v]

(c) ∥u × v∥2 = ∥u∥2∥v∥2 − (u ⋅ v)2 [Lagrange’s identity]

(d) u × (v × w) = (u ⋅ w)v − (u ⋅ v)w [vector triple product]

(e) (u × v) × w = (u ⋅ w)v − (v ⋅ w)u [vector triple product]

3.5.2  If u, v, and w are any vectors in 3-space and k is any scalar, then:
(a) u × v = −(v × u)

(b) u × (v + w) = (u × v) + (u × w)

(c) (u + v) × w = (u × w) + (v × w)

(d) k(u × v) = (ku) × v = u × (kv)

(e) u × 0 = 0 × u = 0

(f) u × u = 0

Geometric Interpretation of Cross Products

3.5.3  If u and v are any vectors in 3-space, ∥u × v∥ is equal to the area of the
parallelogram determined by u and v. As such, the area of the triangle determined by u
and v is ∥u×v∥

2 .

The special product u ⋅ (v × w) is called the scalar triple product. To find the value,
arrange the values of the three vectors and find

3.5.4  The absolute value of det [ ] is equal to the area of the 2-space

parallelogram determined by u = (u1,u2) and v = (v1, v2). The volume of the
parallelepiped determined by three vectors in 3-space is the same way. As such the
volume of such a parallelepiped is equal to |u ⋅ (v × w)|

3.5.5  If three vectors u, v, w all have the same initial point, they lie in the same plane
if and only if u ⋅ (v × w) = 0.

4: General Vector Spaces

⎡⎢⎣ i j k

a1 a2 a3

b1 b2 b3

⎤⎥⎦∣u1 u2 u3

v1 v2 v3

w1 w2 w3∣u1 u2

v1 v2

Last revised 3/18/25, 6:02 PM

22 / 64

af://h3-73
af://h1-74


4.1: Real Vector Spaces
Vector Space Axioms

Let V  be an arbitrary nonempty set of objects. If the following axioms are satisfied by
all objects u, v, w that are in V  and all scalars k and m, then we call V  a vector space
and we call the objects in V  vectors.

Axioms 1, 4, and 6 are very important, since most of the other axioms can be derived
from them. 1 is called closure under addition and 6 is called closure under scalar
multiplication.

Some important vector spaces are:

Vector Properties

4.1.1  Let V  be a vector space, u a vector in V , and k a scalar.
(a)  0u = 0

(b)  k0 = 0

1. If u and v are objects in V , then u + v is in V .
2. u + v = v + u

3. u + (v + w) = (u + v) + w

4. There exists an object in V , called the zero vector, that is denoted by 0 and has the
property that 0 + u = u + 0 = u for all u in V .

5. For each u in V , there is an object −u in V , called a negative of u, such that
u + (−u) = (−u) + u = 0.

6. If k is any scalar and u is any object in V , then ku is in V .
7. k(u + v) = ku + kv

8. (k + m)u = ku + mu

9. k(mu) = (km)(u)

10. 1u = u

V = {0}, the zero vector space.
V = {Rn}

V = {R∞}, an infinite set of real numbers

V = {( ) ∣ a, b, c, d ∈ R}, all 2x2 matrices with real entries
a b

c d

Vector spaces of matrices of a specific size are denoted as Mmn

The vector space of functions defined on all x from (a, b) is F (a, b) with square
brackets for closed intervals
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(c)  (−1)u = −u

(d)  If ku = 0, either k = 0 or u = 0

Sets can define their addition and scalar multiplication rules differently than algebraic
operations. For example, ku can be defined to equal uk. If they pass all the axioms
under these defined conditions, they are still a vector space.

4.2: Subspaces
A subset W  of a vector space V  is a subspace if W  is a vector space under the addition
and scalar multiplication defined with V . Since a subspace W  must be a vector space, it
must obey all ten axioms. W  inherits many axioms from V , meaning they do not need
to be proven for W , just V .

W  does not inherit these axioms:

4.2.1  W  is a subspace of V  if and only if:
(a)  It is closed under addition
(b)  It is closed under scalar multiplication

The conditions in 4.2.1 must be the same addition and scalar multiplication as defined
in V .

All vector spaces have, at minimum, two subspaces: itself and W = {0}, the zero
subspace.

Special case: In R2 and R3, lines and planes through (0, 0) are subspaces.

Axiom 1: Closure of W  under addition
Axiom 4: Existence of 0 in W
Axiom 5: Existence of a negative of every vector in W , inside W
Axiom 6: Closure of W  under scalar multiplication

The set of all continuous functions on (−∞, ∞) is a subspace of F (−∞, ∞) called
C (−∞, ∞).

The set of functions with a derivative that is continuous is denoted by
C 1 (−∞, ∞), where 1 can be up to ∞ for which order derivative is referred to.
It is also a subspace of F .

The set of all polynomials is also a subspace of F  denoted by P∞.
However, the set of all polynomials with degree n is not a subspace of F . But,
the set of all polynomials with degree including and under a non-negative
integer n is a subspace of F . That will be denoted by Pn.
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The Hierarchy of Function Spaces

Subspaces can be within subspaces. Eg. Cm is inside C 1 which is inside C which is
inside F .

Building Subspaces

4.2.2  If W1,W2, … ,Wr are subspaces of a vector space V , then the intersection (∩) of
these subspaces is also a subspace.

4.2.3  The set of solutions of a homogenous equation Ax = 0 of m equations and n
unknowns is a subspace of Rn.

4.3: Spanning Sets
Spanning Sets

A vector w in V  is said to be a linear combination of vectors v1, v2, … , vr if it can be
expressed as w = k1v1, k2v2, … , krvr for scalars k (coefficients).

4.3.1  For a non-empty set of vectors in V  called S:
(a)  A set containing all possible linear combinations of vectors in S is a subspace of V
(b)  That set is the 'smallest' subspace of V  that contains all the vectors in S.

If that set is called W , then we can say that W = span(S) or W = span{w1, w2, … , wr}

for the vectors w of S. Essentially, if a set W  is said to span a space V , every vector in V
can be created through linear combinations of W

Note: Spanning sets are not unique.

4.3.2  If S (v1, …) and T  (w1, …) are nonempty sets of vectors in a vector space V ,

span {v1, v2, … , vr} = span {w1, w2, … , wr}

is true if and only if each vector in S is a linear combination of those in T , and vice
versa.

4.4: Linear Independence
If S is a set of two or more vectors in a vector space V , it is a linearly independent set
if no vector in S can be created via linear combination of the others. If there is only one
vector in S, it is only linearly independent if that vector is nonzero.

4.4.1  A nonempty set S in a vector space V  is linearly independent if and only if the
only coefficients satisfying
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k1v1 + k2v2 + ⋯ + krvr = 0

are k1 = 0, k2 = 0, … , kr = 0.

The set 1,x,x2,x3, … ,xn forms a linearly independent set in Pn.

4.4.2  A set with finitely many vectors that contains 0 is linearly dependent. A set with
two vectors is linearly independent if and only if the two vectors are not scalar
multiples of one another.

4.4.3  For a set S of vectors in Rn with r vectors, if r > n, S is linearly dependent.

Linear Independence of Functions

To find linear independence, try to use identities and algebra to solve for dependence.
If not possible, use the Wronskian.

The Wronskian is the determinant of the matrix formed by the derivatives of the
functions in a set W , up to the n − 1 times derivative.

W(y1, y2, … , yn)(x) =

4.4.4  If the Wronskian of a set of functions W  is not zero on (−∞, ∞), then the set
forms a linearly independent set of vectors in C (n−1) (−∞, ∞). Note that you must
choose the value of n to create a square Wronskian.

4.5: Coordinates and Basis
Basis of a Vector Space

A vector space V  is finite-dimensional if there is a finite set of vectors in V  that spans
V . It is infinite-dimensional if no such set exists.

If S is a set of vectors in a finite-dimensional V , then S is called a basis for V  if S spans
V  and S is linearly independent.

Remember that if det (A) ≠ 0 for an augmented matrix A, it will have only the trivial
solution in a homogenous system, and it will be consistent for all values of a
nonhomogeneous system- i.e it will be a basis for Rn.

Coordinates Relative to a Basis∣ y1(x) y2(x) ⋯ yn(x)

y′
1(x) y′

2(x) ⋯ y′
n(x)

⋮ ⋮ ⋱ ⋮

y
(n−1)
1 (x) y

(n−1)
2 (x) ⋯ y

(n−1)
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4.5.1  If S is a basis for a vector space V , then every vector v in V  can be expressed as a
linear combination of the vectors in S in only one way.

If S is an ordered basis (a basis where the order of the vectors in S matters) for a vector
space V  and

v = c1v1 + c2v2 + ⋯ + cnvn

is the expression of v in terms of the vectors of S, then the scalars c1, c2, … , cn are the
coordinates of v relative to the basis S. A vector made of the scalars is called the
coordinate vector of v relative to S, denoted by (v)s = (c1, c2, … , cn).

4.6: Dimension
Dimensionality

4.6.1  All bases of a finite-dimensional (spanning space has finite vectors) vector space
have the same number of vectors.

4.6.2  Let V  be a finite-dimensional vector space and {v1, v2, … , vn} be any basis for
V .
(a)  If a set in V  has more than n vectors, then that set is linearly dependent.
(b)  If a set in V  has fewer than n vectors, then that set cannot span V .

The dimension or degrees of freedom of a vector space V  is denoted by dim (V ) and is
the number of vectors in a basis for V . The zero vector space has dim (0) = 0.

4.6.3  Plus-Minus Theorem: Let S be a non-empty set of vectors in a vector space V .
(a)  If S is a linearly independent set, and if v is a vector in V  that is outside span(S),
then the set S ∪ {v} that results by inserting v into S is still linearly independent.
(b)  If v is a vector in S that is expressible as a linear combination of other vectors in S,
and if S − {v} denotes the set obtained by removing v from S, then S and S − {v} span
the same space; that is,

span(S) = span(S − {v})

Basically, if you add a vector to a linearly independent set that can't create that vector,
it stays linearly independent, and if you remove a dependent vector from a dependent
set, the span does not change.

dim (Rn) = n

dim (Pn) = n + 1

dim (Mmn) = m ⋅ n
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4.6.4  Let V  be an n-dimensional vector space, and S be a set in V  with n vectors. S is a
basis for V  if it spans V  OR S is linearly independent.

4.6.5  Let V  be a finite-dimensional vector space, and S be a set in V  with a finite
number of vectors.
(a)  If S spans V  but is not a basis for it, S can become a basis by removing appropriate
vectors from S.
(b)  If S is linearly independent but is not a basis for V , it can become a basis by adding
appropriate vectors to S.

4.6.6  If W  is a subspace of a finite-dimensional vector space V ,
(a)  W  is also finite-dimensional.
(b)  The dimension of W  is smaller than the dimension of V .
(c)  W = V  if and only if dim (W) = dim (V ).

4.7: Change of Basis
Coordinate Maps

If S is a basis for a finite-dimensional vector space V , and the coordinate vector of a
vector v is (v)s = (c1, c2, … , cn), we can map v → (v)s. This creates a connection
between the vectors in the vector space and the vectors in Rn. This map is called the
coordinate map relative to S from V  to Rn. Basically, the basis of a vector is useful to
find the unique corresponding coordinate vector in Rn to a vector in V .

Change of Basis

To change basis from B1 → B2, do this:

4.7.1  If P  is the transition matrix from a basis B to B′, then P  is invertible and P −1 is
the transition matrix from B′ to B.

A more efficient way to change basis is as follows:

For each vector in B1 called vn, find a linear combination such that vn = k1u1 …

for every vector un in B2. The scalars kn should be arranged into a column.
Put together all the columns from all the combinations formed with every vector of
vn to create a square transition matrix P  such that the j-th column corresponds to
the coefficients of the j-th vectors in B2.
Then, [v]B2 = P [v]B1  for every vector v in V . Plug in the found values.

Form a matrix [new basis | old basis] in which the basis vectors are in columns.
Use elementary row operations to reduce the matrix on the left, the new basis, to I.
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4.7.2  Let B = {u1, u2, … , un} be any basis for Rn and S be the standard basis for Rn.
If the bases are in column form, then the basis from B to S can be described as

PB→S = [u1, u2, … , un]

4.8: Row Space, Column Space, and Null Space
If A is a n × m matrix:

Relationship between Ax = 0 and Ax = b

Ax = 0 and Ax = b are corresponding equations if they share a matrix A.

4.8.1  A system of equations Ax = b is consistent if and only if b is in the column
space of A.

4.8.2  If x0 is any solution of a consistent linear system Ax = b, and S = v1, v2, … , vn

is a basis for the null space of A, then every solution of Ax = b can be expressed in the
form

x = x0 + c1v1 + c2v2 + ⋯ + ckvk

For all choices of scalars c1, c2, …, the vector x is a solution of Ax = b.

x0 is called the particular solution of Ax = b, and the remaining part is called the
general solution of Ax = 0. Basically, we can say that the general solution of a
consistent linear system can be expressed as the sum of one solution of the system
and the general solution of the corresponding homogenous system.

4.8.3 

(a)  Row equivalent matrices have the same row space.
(b)  Row equivalent matrices have the same null space.

4.8.4  If a matrix A is reduced to a row echelon form Ar (NOT RREF), then the row
vectors with leading ones (nonzero row vectors) form a basis for the row space of A,
and the column vectors with leading ones form a basis for the column space of Ar.

The transition matrix is the remaining matrix on the right.

The subspace spanned by the row vectors of A is denoted by row(A) and is called
the row space.
The subspace spanned by the column vectors of A is denoted by col(A) and is called
the column space.
The solution space of the homogenous system Ax = 0, a subspace of Rn, is denoted
by null(A) and is called the null space.
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However, since the order of columns can be changed by elementary row operations,
this method cannot find the column space of A, only of Ar.

Bases Formed From Row and Column Vectors

4.8.5  If A and B are row equivalent matrices, then
(a)  A given set of column vectors of A is linearly independent if and only if the
corresponding column vectors of B are also linearly independent.
(b)  A given set of column vectors of A forms a basis for the column space of A if and
only if the corresponding column vectors of B form a basis for the column space of B.

Note that you can transpose a matrix to turn row vectors into column vectors and vice
versa to take advantage of these theorems. (remember to transpose them again when
you're done.)

How to find the basis for the space spanned by a set of vectors:

4.9: Rank, Nullity, and the Fundamental Matrix Spaces
4.9.1  The row space and column space of a matrix A have the same dimension.

Rank and Nullity

The rank of a m × n matrix is min (m,n).

4.9.2  Dimension Theorem for Matrices: If A is a matrix with n number of columns,

rank(A) + nullity(A) = n

4.9.3  If A is an m × n matrix, then

1. Form a matrix whose columns are the vectors from the set
2. Reduce to row echelon
3. The matrix columns corresponding to the columns with leading ones form a basis

for the matrix.
4. Obtain dependency equations by forming the columns without leading ones

through linear combinations of the leading one columns (in the reduced row
echelon form)

5. These equations work for the original matrix as well

The dimension of the row/column space of a matrix A is called the rank, denoted by
rank(A).
The dimension of the null space of a matrix A is called the nullity, denoted by
nullity(A).
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(a)  rank(A) = the number of leading variables in the general solution of Ax = 0.
(b)  nullity(A) = the leading number of parameters in the general solution of Ax = 0.

4.9.4  If Ax = b is a consistent linear system of m equations and n unknowns, and A
has rank r, then the general solution has n − r parameters.

The Fundamental Spaces of a Matrix

The fundamental spaces of a matrix A and its transpose AT  are:

But only 4 are distinct:

4.9.4  For any matrix A, rank(A) = rank(AT ).

For a m × n matrix A:

A Geometric Link Between the Fundamental Spaces

If W  is a subset of Rn, then the set of all vectors in Rn that are orthogonal to every
vector in W  is called the orthogonal complement to W  and is denoted by W ⊥.

4.9.6  If W  is a subspace of Rn, then:
(a)  W ⊥ is a subspace of Rn.
(b)  The only vector common to W  and W ⊥ is 0.
(c)  The orthogonal complement to W ⊥ is W , or (W ⊥)⊥ = W

Column space of A
Row space of A
Null space of A
Column space of AT

Row space of AT

Null space of AT

Column space of A
Row space of A
Null space of A
Null space of AT  (or left null space, dim (null(AT )) is called left nullity)

dim (row(A)) = r

dim (col(A)) = r

dim (null(A)) = n − r

dim (null(AT )) = m − r
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4.9.4  If A is an m × n matrix, then:
(a)  The null space of A and row space of A are orthogonal complements in Rn.
(b)  The null space of AT  and the column space of A are orthogonal complements in Rn

.

4.9.8  For square matrix A with NO DUPLICATE ROWS/COLUMNS, all of these
statements are equivalent:
(a) A is invertible.
(b) Ax = 0 has only the trivial solution.
(c)  The reduced row echelon form of A is In.
(d) A can be expressed as a product of elementary matrices.
(e) Ax = b is consistent for every n × 1 matrix b.
(f) Ax = b has exactly one solution for every n × 1 matrix b.
(g)  det(A) ≠ 0.

(h)  The column vectors of A are linearly independent.
(i)  The row vectors of A are linearly independent.
(j)  The column vectors of A span Rn.
(k)  The row vectors of A span Rn.
(l)  The column vectors of A form a basis for Rn.
(m)  The row vectors of A form a basis for Rn.
(n)  A has rank n.
(o)  A has nullity 0.
(p)  The orthogonal complement of the null space of A is Rn.
(q)  The orthogonal complement of the row space of A is {0}.

5: Eigenvalues and Eigenvectors

5.1: Eigenvalues and Eigenvectors
Eigenvalues and Eigenvectors

If A is n × n, a vector x is called an eigenvector of A if Ax = λx for some scalar λ. λ is
called an eigenvalue while x is called the eigenvector corresponding to λ.

5.1.1  If λ is an eigenvalue of A, then it is only an eigenvalue if and only if it satisfies
det (λI − A) = 0. This equation is the characteristic equation of A.

5.1.2  The eigenvalues of a triangular matrix are the entries on the main diagonal.

5.1.3  The following statements are equivalent for an n × n matrix A:
(a)  λ is an eigenvalue of A
(b)  det (λI − A) = 0
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(c)  (λI − A)x = 0 has nontrivial solutions.
(d)  There is a nonzero vector x such that Ax = λx

Finding Eigenvalues and Bases for Eigenspaces

Finding eigenspaces:

5.1.4  A square matrix A is invertible if and only if λ = 0 is not an eigenvalue.

5.1.5  For square matrix A with NO DUPLICATE ROWS/COLUMNS, all of these
statements are equivalent:
(a) A is invertible.
(b) Ax = 0 has only the trivial solution.
(c)  The reduced row echelon form of A is In.
(d) A can be expressed as a product of elementary matrices.
(e) Ax = b is consistent for every n × 1 matrix b.
(f) Ax = b has exactly one solution for every n × 1 matrix b.
(g)  det(A) ≠ 0.

(h)  The column vectors of A are linearly independent.
(i)  The row vectors of A are linearly independent.
(j)  The column vectors of A span Rn.
(k)  The row vectors of A span Rn.
(l)  The column vectors of A form a basis for Rn.
(m)  The row vectors of A form a basis for Rn.
(n)  A has rank n.
(o)  A has nullity 0.
(p)  The orthogonal complement of the null space of A is Rn.
(q)  The orthogonal complement of the row space of A is {0}.
(r)  λ = 0 is not an eigenvalue of A.

5.2: Diagonalization
Diagonalization

A similarity transformation is when A is mapped to P −1AP  for some invertible matrix
P . Doing this preserves some properties of A. These properties are called invariant
under similarity.

Find all eigenvalues
Solve (λI − A)x = 0 for x
Use parametric equations to find column vectors
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The following are invariant under similarity:

If A and B are square matrices, B is similar to A if there is an invertible matrix P  such
that B = P −1AP . B is a diagonal matrix such that the eigenvalues of A are on the main
diagonal.

If A is a square matrix, it is diagonalizable if it is similar to some diagonal matrix. Or,
there is some matrix P  such that P −1AP  is diagonal.

5.2.1  The following statements are equivalent for an n × n matrix A:
(a)  A is diagonalizable.
(b)  A has n linearly independent eigenvectors.

5.2.2 The following statements are equivalent for an n × n matrix A:
(a)  If λ1,λ2, … ,λk are distinct eigenvalues of a matrix A, and if v1, v2, … , vk are the
corresponding eigenvectors, then {v1, v2, … , vk} is a linearly independent set.
(b) An n × n matrix with n distinct eigenvalues is diagonalizable.

Procedure to Diagonalize a Matrix

Procedure for diagonalizing a matrix:

Computing Large Powers of Matrices

5.2.3  If λ is an eigenvalue of A and x is its corresponding eigenvector, λk for a
nonnegative integer k is an eigenvalue of Ak, and x is its corresponding eigenvector.

When taking large powers of matrices, use

1. Determinant: A and P −1AP  have the same determinant.
2. Invertibility: A is invertible if and only if P −1AP  is invertible.
3. Rank: A and P −1AP  have the same rank.
4. Nullity: A and P −1AP  have the same nullity.
5. Trace: A and P −1AP  have the same trace.
6. Characteristic polynomial: A and P −1AP  have the same characteristic polynomial.
7. Eigenvalues: A and P −1AP  have the same eigenvalues.
8. Eigenspace dimension: If λ is an eigenvalue of A (and hence of P −1AP ), then the

eigenspace of A corresponding to λ and the eigenspace of P −1AP  corresponding to
λ have the same dimension.

Find basis vectors of a matrix.
Form them into a matrix such that each basis vector is a column.
Use P −1AP  to find A.
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where k can be set to an arbitrarily large power.

While an n × n matrix with n distinct eigenvalues is diagonalizable, the inverse is false.
If a matrix is diagonalizable, it does not guarantee it has n eigenvalues.

5.2.4  For an n × n matrix A:
(a)  For every eigenvalue of A, the geometric multiplicity is less than or equal to the
algebraic multiplicity.
(b)  A is diagonalizable if and only if its characteristic polynomial can be expressed as a
product of linear factors, and the geometric multiplicity of every eigenvalue is equal to
the algebraic multiplicity.

5.3: Complex Vector Spaces
Complex Numbers

If z = a + bi is a complex number, then

Vectors in C n

Cn, or the complex n-space, is the set of all sequences of complex numbers.

5.3.1  If u and v are vectors in Cn, and if k is a scalar, then:
(a)  u = u

(b)  ku =
–
ku

(c)  u + v = u + v

(d)  u − v = u − v

B = P −1AP

A = P −1BP

Ak = P −1BkP

Re(z) = a and Im(z) = b are called the real part of z and the imaginary part of z
respectively.
|z| = √a2 + b2 is called the modulus (or absolute value) of z.
–z = a − bi is called the complex conjugate of z. I like to think of it as z but evil and
nefarious.
z–z = a2 + b2 = |z|2

The angle z makes with the Re(z) axis on the complex plane is an argument of z.
Re(z) = |z| cos (ϕ).
Im(z) = |z| sin (ϕ).
z = |z|(cos (ϕ) + i sin (ϕ)) is called the polar form of z.

––
––
–––
–––
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5.3.2  If A is an m × n complex matrix and B is a n × p complex matrix, then

(a)  A = A

(b)  (AT) = (A)
T

(c)  AB = AB

If u and v are vectors in Cn, then the complex Euclidean inner product (or complex
dot product) is u ⋅ v and defined as

u ⋅ v = u1
–v1 + u2

–v2 + ⋯ + un
–vn

The Euclidean norm on Cn is

∥v∥ = √v ⋅ v = √|v1|2 + |v2|2 + ⋯ + |vn|2

As normal, v is a unit vector if ∥v∥ = 1, and two vectors u and v are orthogonal if
u ⋅ v = 0.

5.3.3  If u, v, and w are vectors in Cn, and if k is a scalar, then the complex Euclidean
inner product has the following properties:
(a) u ⋅ v = v ⋅ u [Antisymmetry property]

(b) u ⋅ (v + w) = u ⋅ v + u ⋅ w [Distributive property]

(c) k(u ⋅ v) = (ku) ⋅ v [Homogeneity property]

(d) u ⋅ (kv) =
–
k(u ⋅ v) [Antihomogeneity property]

(e) u ⋅ v ≥ 0 and u ⋅ v = 0 if and only if v = 0 [Positivity property]

Vector Concepts in C n

5.3.4  If λ is an eigenvalue of a real n × n matrix A, and if x is a corresponding
eigenvector, then λ is also an eigenvalue of A, and x is its corresponding eigenvector.

5.3.5  If A is a 2 × 2 matrix with real entries, then the characteristic equation of A is
 and

(a) A has two distinct real eigenvalues if tr(A)2 − 4 det (A) > 0

(b) A has one distinct repeated real eigenvalue if tr(A)2 − 4 det (A) = 0

(c) A has two complex conjugate eigenvalues if tr(A)2 − 4 det (A) < 0

↑ this comes in very handy even for non-complex matrices!!

5.3.6  If A is a real symmetric matrix, then A has real eigenvalues.

A Geometric Interpretation of Complex Eigenvalues

––

––

–––

–

––

λ2 − tr(A)λ + det (A) = 0
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5.3.7  The eigenvalues of the real matrix

C = [ ]

are λ = a ± bi. If a and b are not both zero, then this matrix can be factored as

[ ] = [ ] [ ]

where ϕ is the angle from the positive x-axis to the ray that joins the origin to the point
(a, b).

5.3.8  Let A be a real 2 × 2 matrix with complex eigenvalues λ = a ± bi (b ≠ 0). If x is
an eigenvector of A that corresponds to λ = a − bi, then the matrix P = [ ]

is invertible and

A = P [ ]P −1

5.5: Dynamical Systems and Markov Chains
A dynamical system is a set of variables that change with time. The value of a vector at
any point is the state, and a vector formed of these states is a state vector.

Markov Chains

A probability vector is a matrix with n possible states, expressed as probabilities.

x(t) =

A square matrix with probability vectors as columns is called a stochastic matrix.

A Markov Chain is a dynamical system whose state vectors at successive times are
defined by an equation of the form

x(k + 1) = Px(k)

in which P = [pij] is a stochastic matrix and pij is the probability that the system will
be in state i by time t = k. The matrix P  is called the transition matrix for the system.

a −b

b a

a −b

b a

|λ| 0
0 |λ|

cos (ϕ) − sin (ϕ)
sin (ϕ) cos (ϕ)

Re(x) Im(x)

a −b

b a

⎡⎢⎣x1(t)

x2(t)

⋮
xn(t)

⎤⎥⎦ Probability the system is at State 1

Probability the system is at State 2

⋮
Probability the system is at State n
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A transition matrix (n × n) looks like this:

P =

where the columns represent the state of the system at t = n and the rows represent
the chances of the system moving to that specific state on t = n + 1.

You can find the state vector at any time t by manipulating the transition matrix via

xt = P tx0

which is useful for finding any state vector immediately from the initial state vector.

Long-Term Behavior of a Markov Chain

In some cases, a state vector will stabilize after a sufficiently long number of
manipulations by P . But, not all chains stabilize. A stochastic matrix P  is said to be
regular if P  or some positive power of P  has all positive entries. A Markov chain
whose transition matrix is regular is said to be a regular Markov chain.

5.5.1  If P  is the transition matrix of a regular Markov chain, then:
(a) There is a unique probability vector q with positive entries such that Pq = q.
(b) For any initial probability vector x0, the sequence of state vectors
x0,Px0, … ,P kx0, … converges to q.
(c) The sequence P ,P 2, … ,P k, … converges to the matrix Q, each of whose column
vectors is q.

To find q:

6: Inner Product Spaces

6.1: Inner Products

⎡⎢⎣p11 p12 ⋯ p1n

p21 p22 ⋯ p2n

⋮ ⋮ ⋱ ⋮
pn1 pn2 ⋯ pnn

⎤⎥⎦Make sure the matrix has a steady-state matrix (it is regular)
Solve (I − P)q = 0 for a set of parametric equations

You should get a vector like [ ]. Use 1 = q1 + q2 + … for every element in the

vector to find the value of the parameter (in this case s).

1
2 s

s

Substitute back into the vector.
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General Inner Products

You should assume all vector spaces in this chapter, unless said so implicitly, are real.

An inner product on a real vector space V  is a function that associates a real number
⟨u, v⟩ with a pair of vectors in V  in such a way that the following axioms are satisfied
for all vectors u, v, w and all scalars k.

We can conveniently fill all of these axioms instantly by defining ⟨u, v⟩ = u ⋅ v, which
is how dot product is defined.

If V  is a real inner product space, then the norm (length) of a vector v in V  denoted by
∥v∥ and equals

∥v∥ = √⟨v, v⟩

and the distance between two vectors is denoted by d(u, v) and equals

d(u, v = ∥u − v∥ = √⟨u − v, u − v⟩)

6.1.1  If u and v are vectors in a vector space V , and k is a scalar:
(a) ∥v∥ ≥ 0 if and only if v = 0

(b) ∥kv∥ = |k|∥v∥

(c) d(u, v) = d(v, u)

(d) d(u, v) ≥ 0 if and only if u = v

You can also add positive real number weights to each component-wise part of the dot
product formula to modify the resultant product like

⟨u, v⟩ = w1u1v1 + w2u2v2 + ⋯ + wnunvn

called the weighted Euclidean inner product with weights w1,w2, … ,wn.

Unit Circles and Spheres in Inner Product Spaces

If V  is an inner product space, the set of points in V  that satisfy ∥u∥ = 1 is called the
unit sphere in V  (or the unit circle in R2)

1. ⟨u, v⟩ = ⟨v, u⟩

2. ⟨u + v, w⟩ = ⟨u, w⟩+ ⟨v, w⟩

3. ⟨ku, v⟩ = k⟨u, v⟩

4. ⟨v, v⟩ ≥ 0 and ⟨v, v⟩ = 0 if and only if v = 0

A real vector space with an inner product is called a real inner product space.
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Inner Products Generated by Matrices

The Euclidean inner product is a subset of a greater class of inner products named
matrix inner products. Let u and v be column vectors in Rn and A be an invertible
n × n matrix. Then, this

⟨u, v⟩ = Au ⋅ Av

also defines an inner product called the inner product on Rn generated by A.

Alternatively, since u ⋅ v = vtu, we can rewrite this as

⟨u, v⟩ = vTATAu

Notice that for the Euclidean inner product, we simply use A = I.

Algebraic Properties of Inner Products

6.1.2  If u, v, and w are vectors in a vector space V , and k is a scalar:
(a) ⟨0, v⟩ = ⟨v, 0⟩ = 0

(b) ⟨u, v + w⟩ = ⟨u, v⟩+ ⟨u, w⟩

(c) ⟨u, v − w⟩ = ⟨u, v⟩− ⟨u, w⟩

(d) ⟨u − v, w⟩ = ⟨u, w⟩− ⟨v, w⟩

(e) k⟨u, v⟩ = ⟨u, kv⟩

6.2: Angle and Orthogonality in Inner Product Spaces
Recall the Cauchy-Schwarz Inequality from Chapter 3. The following is a more general
form of the inequality.

6.2.1  Cauchy-Schwarz Inequality: If u and v are vectors in a real inner product space
V , then

|⟨u, v⟩| ≤ ∥u∥∥v∥

or these two alternate forms

Using Cauchy-Schwarz, we can define the θ between two vectors u and v to be
θ = arccos( ⟨u,v⟩

∥u∥∥v∥ ).

Length and Distance in Inner Product Spaces

⟨u, v⟩2 ≤ ⟨u, u⟩⟨v, v⟩

⟨u, v⟩2 ≤ ∥u∥2∥v∥2
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6.2.2  If u, v, and w are vectors in a real inner product space V , and if k is any scalar,
then:
(a) ∥u + v∥ ≤ ∥u∥ + ∥v∥ [Triangle inequality for vectors]

(b) d(u, v) ≤ d(u, w) + d(w, v) [Triangle inequality for distances]

Orthogonality

Two vectors u and v are orthogonal if ⟨v, u⟩ = 0.

6.2.3  Generalized Theorem of Pythagoras: If u and v are orthogonal vectors in an
inner product space, then

∥u + v∥2 = ∥u∥2 + ∥v∥2

If W  is a subspace of a real inner product space V , then the set of all vectors in V  that
are orthogonal to every vector in W  is called the orthogonal complement of W  and is
denoted by W ⊥.

6.2.4  If W  is a subspace of a real inner product space V :
(a) W ⊥ is a subspace of V
(b) W ∩ W ⊥ = 0

6.2.5  If W  is a subspace of a finite-dimensional inner product space V , then the
orthogonal complement of W ⊥ is W .

6.3: Gram-Schmidt Process; QR-Decomposition
Orthogonal and Orthonormal Sets

A set of two or more vectors in a real inner product space is said to be orthogonal if all
pairs of distinct vectors in that set are orthogonal. An orthogonal set in which all
vectors have norm 1 is said to be orthonormal.

You can make an orthonormal set out of an orthogonal set by using u = 1
∥v∥ v for every

vector in the set. (This process is called normalization).

6.3.1  If S = {v1, v2, … , vn} is an orthogonal set of nonzero vectors in an inner
product space, then S is linearly independent.

A basis consisting of orthonormal and orthogonal vectors are called an orthonormal
and orthogonal basis respectively.

Coordinates Relative to Orthonormal Bases
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6.3.2 

(a) If S = {v1, v2, … , vn} is an orthogonal basis for an inner product space V , and u is
any vector in V ,

u(s) =
⟨u, v1⟩

∥v1∥2 v1 +
⟨u, v2⟩

∥v2∥2 v2 + ⋯ +
⟨u, vn⟩

∥vn∥2 vn

(b) If S = {v1, v2, … , vn} is an orthonormal basis for an inner product space V , and u
is any vector in V ,

u(s) = ⟨u, v1⟩v1 + ⟨u, v2⟩v2 + ⋯ + ⟨u, vn⟩vn

Orthogonal Projections

The Projection Theorem defined in Chapter 3 is a special case of the following general
theorem:

6.3.3  If W  is a finite-dimensional subspace of an inner product space V , then every
vector u in V  can be expressed in only one way in the form u = w1 + w2, where w1 is
in W  and w2 is in W ⊥.

The projection vectors are commonly referred to by:

u can also be expressed as projWu + projW ⊥u = projWu + (u − projWu).

6.3.4 

(a) If {v1, v2, … , vr} is an orthogonal basis for W , and u is any vector in V , then

projWu =
⟨u, v1⟩

∥v1∥2 v1 +
⟨u, v2⟩

∥v2∥2 v2 + ⋯ +
⟨u, vr⟩

∥vr∥2 vr

(b) If {v1, v2, … , vr} is an orthonormal basis for W , and u is any vector in V , then

projWu = ⟨u, v1⟩v1 + ⟨u, v2⟩v2 + ⋯ + ⟨u, vr⟩vr

The Gram-Schmidt Process

6.3.5  Every nonzero finite-dimensional inner product space has an orthonormal basis.

The Gram-Schmidt Process is used to convert a basis (u1, u2, … , un) into an
orthogonal basis v1, v2, … , vn.

w1 = projWu

w2 = projW ⊥u

1. v1 = u1
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6.3.6  If W  is a finite-dimensional inner product space:
(a) Every orthogonal set of nonzero vectors in W  can be enlarged to an orthogonal
basis for W .
(b) Every orthonormal set in W  can be enlarged to an orthonormal basis for W .

QR-Decomposition

6.3.7  QR-Decomposition: If A is an n × n matrix with linearly independent columns,
then A can be factored as

A = QR

where Q is an m × n matrix with orthonormal columns, and R is an n × n invertible
upper triangular matrix.

Since a matrix will have linearly independent columns if and only if it is invertible, all
invertible matrices can be converted into a QR-decomposition.

6.4: Best Approximation; Least Squares
Least Squares Solutions of Linear Systems

Sometimes, when we have a system Ax = b that is inconsistent, we will try and find
the closest x to a solution. To do this, we find the ∥b − Ax∥. The vector x in this
expression is the least squares solution, b − Ax is the least squares vector, and
∥b − Ax∥ is the least squares error.

2. v2 = u2 − ⟨u2,v1⟩

∥v1∥2 v1

3. v3 = u3 − ⟨u3,v1⟩

∥v1∥2 v1 − ⟨u3,v2⟩

∥v2∥2 v2

4. v4 = u4 − ⟨u4,v1⟩

∥v1∥2 v1 − ⟨u4,v2⟩

∥v2∥2 v2 − ⟨u4,v3⟩

∥v3∥2 v3

5. ⋮
6. repeat as many times as necessary (n times)

1. Separate A into column vectors u1, u2, … , un.
2. Apply the Gram-Schmidt process to each.
3. Normalize the orthogonal vectors to create n orthonormal column vectors.
4. It follows that

R =
⎡⎢⎣⟨u1, q1⟩ ⟨u2, q1⟩ ⟨u3, q1⟩

0 ⟨u2, q2⟩ ⟨u3, q2⟩

0 0 ⟨u3, q3⟩

⎤⎥⎦5. Q is equal to the reassembled orthonormal column vectors.
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It's called "least squares" because minimizing the least squares error has the side effect
of minimizing the component vectors of b − Ax, which are squares (recall that

∥x∥ = √x2
1 + x2

2 + …).

6.4.1  Best Approximation Theorem: If W  is a finite-dimensional subspace of an inner
product space V , and b is a vector in V , then projWb is the best approximation to b
from W  such that ∥b − projWb∥ < ∥b − w∥ for every vector w in W  that isn't projWb.

Finding Least Squares Solutions

The normal equation associated with a system Ax = b is

ATAx = ATb

and as such,

6.4.2  For every linear system Ax = b, the associated normal system

ATAx = ATb

is consistent, and all solutions are least squares solutions of Ax = b. Moreover, if x is
any least squares solution and W  is the column space of A, then

Ax = projWb

Conditions for Uniqueness of Least Squares Solutions

6.4.3  If A is an m × n matrix, then the following are equivalent.
(a) The column vectors of A are linearly independent.
(b) ATA is invertible.

6.4.4  If A is an m × n matrix with linearly independent column vectors, then for every
m × 1 matrix b, Ax = b has a unique least squares solution. This solution is given by

x = (ATA)−1ATb

and if W  is the column space of A, then

Ax = A(ATA)−1ATb = projWb

6.4.5  For square matrix A with no duplicate rows/columns, all of these statements are
equivalent:
(a) A is invertible.
(b) Ax = 0 has only the trivial solution.
(c)  The reduced row echelon form of A is In.
(d) A can be expressed as a product of elementary matrices.
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(e) Ax = b is consistent for every n × 1 matrix b.
(f) Ax = b has exactly one solution for every n × 1 matrix b.
(g)  det(A) ≠ 0.

(h)  The column vectors of A are linearly independent.
(i)  The row vectors of A are linearly independent.
(j)  The column vectors of A span Rn.
(k)  The row vectors of A span Rn.
(l)  The column vectors of A form a basis for Rn.
(m)  The row vectors of A form a basis for Rn.
(n)  A has rank n.
(o)  A has nullity 0.
(p)  The orthogonal complement of the null space of A is Rn.
(q)  The orthogonal complement of the row space of A is {0}.
(r)  λ = 0 is not an eigenvalue of A.
(s)  ATA is invertible.

6.5: Mathematical Modeling Using Least Squares
A mathematical model is an equation that can be used to extrapolate values past
collected or measured data. A polynomial model uses polynomials as the equation
form.

Least Squares Fit of a Straight Line

A regression line is a straight line that minimizes the sum of the squares of the data
point errors of a set of data.

Ideally, if all of the data points can be placed on one line, then we can transform the
equations of the data points

into a system

[ ] =

Let us associate these matrices with variables, such that this equation becomes
Mv = y. When the data points do not exactly sit on the line (practically always), we

y1 = a + bx1

y2 = a + bx2

…

⎡⎢⎣ 1 x

1 x2

… …
1 xn

⎤⎥⎦ a

b

⎡⎢⎣y1

y2

…
yn

⎤⎥⎦Last revised 3/18/25, 6:02 PM

45 / 64

af://h2-135
af://h3-136


instead try to solve the equation

T

[ ] =

T

for the quantity

[ ]

or as we established, as M TMv = M Ty.

Placing the elements of this matrix into y = ax + b gives us the regression line. This
line minimizes the quantity ∥y − Mv∥2, which can be expressed as

(y1 − (a + bx1))2 + (y2 − (a + bx2))2 + ⋯ + (yn − (a + bxn))2

where the quantities
d1 = |y1 − (a + bx1)|, d2 = |y2 − (a + bx2)|, … d2 = |y2 − (a + bx2)|, dn = |yn − (a +

are called residuals.

The residual dn is the distance between the data point xn, yn and the regression line.
Since the regression line minimizes the squares of the residuals (the 'error'), the
regression line is sometimes called the line of best fit.

6.5.1 Given a set of data points (x1, y1), (x2, y2), … , (xn, yn) and two matrices M  and y,
there exists a unique least squares line fit of the form y = a∗ + b∗x that best fits these
data points. Furthermore, the coefficients a∗ and b∗ that define this line can be found

by solving the equation v = (M TM)−1M Ty, where v = [ ], and the solution v is also

unique.

Least Squares Fit of a Polynomial

We can generalize the method used for a straight line to a polynomial. Use
v = (M TM)−1M Ty to find a∗, b∗.

6.6: Function Approximation; Fourier Series
Best Approximations

An approximation is a function of a specific form that is the closest possible to a
function of another form. For example, approximation of sin (x) over [1, π

2 ] through a

⎡⎢⎣ 1 x

1 x2

… …
1 xn

⎤⎥⎦ ⎡⎢⎣ 1 x

1 x2

… …
1 xn

⎤⎥⎦ a

b

⎡⎢⎣ 1 x

1 x2

… …
1 xn

⎤⎥⎦ ⎡⎢⎣y1

y2

…
yn

⎤⎥⎦a

b

a∗

b∗
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function of form ax2 + bx + c.

Measurements of Error

At any point x0 between two functions f(x) and g(x), the distance between the two
functions (deviation) is |f(x0) − g(x0)|. To extend this across an area, we integrate:

error = ∫
a

b

|f(x) − g(x)| dx

(that's right, Calc 1 lied to you, it doesn't matter which one is on top, just use an
absolute value)

The value ∫ b

a
[f(x) − g(x)]2 is called the mean square error and is the value that needs

to be minimized.

Least Squares Approximations

Let f(x) be a function continuous on [a, b]. Let C[a, b] have the inner product

⟨f , g⟩ = ∫
b

a

f(x)g(x) dx

and let W  be a finite-dimensional subspace of C[a, b]. Thus, we must find a function g
that minimizes

∥f − g∥2 = ∫
b

a

[f(x) − g(x)]2

6.6.1 If f  is a continuous function on [a, b], and W  is a finite-dimensional subspace of
C[a, b], then the function g in W  that minimizes the mean square error

∫
b

a

|f(x) − g(x)|2 dx

is g = projW f , where the orthogonal projection is relative to the inner product

⟨f , g⟩ = ∫
b

a

f(x)g(x) dx

The function g = projW f  is called the least squares approximation to f from W .

Fourier Series

A function of the form T (x) = c0 + c1f(x) + c2f(2x) + ⋯ + cnf(nx) where f(x) is one
of the trigonometric functions sin , cos  is called a trigonometric polynomial. If cn and
dn are both nonzero, then T (x) has order n.
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If we attempt to find a least squares approximation of a function f(x) by a
trigonometric polynomial T (x) of order n or less over [0, 2π], we end up with

projWf =
a0

2
+ [a1 cosx + ⋯ + an cosnx] + [b1 sinx + ⋯ bn sinnx].

where

Or in other words,

ak =
1
π
∫

2π

0
f(x) cos (kx) dx, bk =

1
π
∫

2π

0
f(x) sin (kx) dx

and all a, b are known as the Fourier coefficients of f .

7. Diagonalization and Quadratic Forms

7.1: Orthogonal Matrices
Orthogonal Matrices

We say a square matrix is orthogonal if its transpose is its inverse, such that AAT = I.
A transformation TA : Rn → Rn is an orthogonal transformation if A is orthogonal.

a0 =
2

√2π
⟨f , g0⟩ =

2

√2π

2π

∫
0

f(x)
1

√2π
dx =

1
π

2π

∫
0

f(x) dx

a1 =
1

√π
⟨f , g1⟩ =

1

√2π

2π

∫
0

f(x)
1

√2π
cosx dx =

1
π

2π

∫
0

f(x) cosx dx

⋮

an =
1

√2π
⟨f , gn⟩ =

1

√2π

2π

∫
0

f(x)
1

√2π
cos(nx) dx =

1
π

2π

∫
0

f(x) cos(nx) dx

b1 =
1

√2π
⟨f , gn+1⟩ =

1

√2π

2π

∫
0

f(x)
1

√2π
sinx dx =

1
π

2π

∫
0

f(x) sinx dx

⋮

bn =
1

√2π
⟨f , g2n⟩ =

1

√2π

2π

∫
0

f(x)
1

√2π
sin(nx) dx =

1
π

2π

∫
0

f(x) sin(nx) dx
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7.1.1  The following are equivalent for an n × n matrix A.
(a) A is orthogonal.
(b) The column vectors of A form an orthonormal set in Rn with the Euclidean inner
product.
(c)  The row vectors of A form an orthonormal set in Rn with the Euclidean inner
product.

7.1.2  Transferability of orthogonality:
(a) The transpose of an orthogonal matrix is orthogonal.
(b) The inverse of an orthogonal matrix is orthogonal.
(c)  A product of orthogonal matrices is orthogonal.
(d)  If A is orthogonal, then det (A) = 1 or det (A) = −1.

Properties of Orthogonal Transformations

7.1.3  The following are equivalent for an n × n matrix A.
(a) A is orthogonal.
(b)  ∥Ax∥ = ∥x∥ for all x in Rn.
(c)  Ax ⋅ Ay = x ⋅ y for all x, y in Rn.

Change of Orthonormal Basis

7.1.4  If S is an orthonormal basis for an n-dimensional inner product space V , and

(u)S = (u1,u2, … ,un) and (v)S = (v1, v2, … , vn)

then these familiar formulas are valid:

(a)  ∥u∥ = √u2
1 + u2

2 + …u2
n

(b)  d(u, v) = √(u1 − v1)2 + (u2 − v2)2 + ⋯ + (un − vn)2

(c)  ⟨u, v⟩ = u1v1 + u2v2 + ⋯ + unvn

7.1.5  Let V  be a finite-dimensional vector space. If P  is the transition matrix from one
orthonormal basis for V  to another orthonormal basis for V , then P  is an orthogonal
matrix.

7.2: Orthogonal Diagonalization
If A and B are square matrices, then B is orthogonally similar to A if there is an
orthogonal matrix P  such that B = P TAP . If A is similar to some diagonal matrix D,
as in P TAP = D, then A is orthogonally diagonalizable and P  orthogonally
diagonalizes A.

Conditions for Orthogonal Diagonalizability
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7.2.1  The following are equivalent for an n × n matrix A with real entries.
(a)  A is orthogonally diagonalizable.
(b)  A has an orthonormal set of n eigenvectors.
(c)  A is symmetric.

Properties of Symmetric Matrices

7.2.2  If A is a symmetric matrix with real entries:
(a)  The eigenvalues of A are all real numbers.
(b)  Eigenvectors from different eigenspaces are orthogonal.

How to orthogonally diagonalize a n × n symmetric matrix:

Spectral Decomposition

By multiplying through A = PDP T , we get

A = λ1u1uT
1 + λ2u2uT

2 + ⋯ + λnunuT
n

This expansion is called a spectral decomposition of A. The matrix uuT  is the
standard matrix for the projection of Rn on the subspace spanned by u. Essentially, the
spectral decomposition says that the result of transforming a vector x by
multiplication by a matrix A can be found by projecting x orthogonally on the one-
dimensional eigenvectors of A, scaling those projections by the corresponding
eigenvalues, then adding them.

The Nondiagonalizable Case

Note: For this part, × will be used to represent an unspecified value.

7.2.3  Schur's Theorem: If A is an n × n matrix with real entries and real eigenvalues,
then there is an orthogonal matrix P  such that P TAP  is an upper triangular matrix of

1. Find a basis for each eigenspace of A
2. Apply Gram-Schmidt to each base to obtain an orthonormal basis for each

eigenspace
3. Form a matrix P  whose columns are the vectors from Step 2. This matrix will

orthogonally diagonalize A. The eigenvalues on the diagonal of D = P TAP  will be
in the same order as the corresponding eigenvectors in P .
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the form

P TAP =

where λ1,λ2, … ,λn are the eigenvalues of A, potentially repeated according to
multiplicity.

This matrix is often called S, so that the diagonalization equation is rewritten as
A = P TSP .

7.2.3  Hessenberg's Theorem: If A is an n × n matrix with real entries, then there is an
orthogonal matrix P  such that P TAP  is a matrix of the form

P TAP =

where unlike with Schur's Theorem, the eigenvalues are not guaranteed to be in P .
Essentially, Hessenburg's Theorem says that every square matrix with real entries is
orthogonally similar to a matrix in which each entry below the first subdiagonal is
zero. The above matrix is more specifically known as upper Hessenburg form; the
formula becomes A = PHP T , and is called an upper Hessenburg decomposition of A.

7.3: Quadratic Forms

Definition of a Quadratic Form

Expressions of form a1x2 + a2x2 + ⋯ + anxn are called linear forms of the variables (
x1,x2, … ,xn) on Rn. Quadratic forms are of the form

⎡⎢⎣λ1 × × … ×
0 λ2 × … ×
0 0 λ3 … ×

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … λn

⎤⎥⎦⎡⎢⎣× × ⋯ × × ×
× × ⋯ × × ×

0 × ⋱ × × ×

⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 ⋯ × × ×
0 0 ⋯ 0 × ×

⎤⎥⎦ Warning

Be warned that this section may be lacking! I recommend using the textbook
instead, because explaining 3D geometry without images is really hard.
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a1x
2
1 + a2x

2
2 + ⋯ + anx

2
n + (all terms of the form akxixj where i ≠ j). The terms akxixj

are known as cross product terms. Since there is one combination axixj and one
combination axjxi for two values of i, j, these are usually doubled to avoid repetition.
Thus, a general quadratic form may look like this: a1x

2
1 + a2x

2
2 + 2a3x1x2

For a symmetric n × n matrix A and n × 1 vector x, QA(x) = xTAx is the quadratic
form associated with A. Expansion of this product will result in the quadratic form.
Using properties of dot products, xTAx is also equal to x ⋅ Ax and Ax ⋅ x.

If A is diagonal, then the expanded quadratic form will have no cross product terms.

Change of Variable in Quadratic Form

There are three main problems concerning quadratic forms:

We can make a substitution x = Py in order to express the variables x1,x2, … ,xn as
y1, y2, … , yn. If P  is invertible, this is called change of variable. If P  is orthogonal, this
is called orthogonal change of variable.

7.2.4  The Principal Axes Theorem: If A is a symmetric n × n matrix, then there is an
orthogonal change of variable that transforms the quadratic form xTAx into a
quadratic form yTDy with no cross product terms. Specifically, if P  orthogonally
diagonalizes A, then making the change of variable x = Py in the quadratic form
xTAx yields the quadratic form

xTAx = yTDy = λ1y
2
1 + λ2y

2
2 + ⋯ + λny

2
n

in which λ1,λ2, … ,λn are the eigenvalues of A corresponding to the eigenvectors that
form the successive columns of P .

Quadratic Forms in Geometry

A conic section is the curve that results when cutting a double-napped cone with a
plane. The following sections may result:

1. If xTAx is a quadratic form on R2 or R3, what kind of curve or surface is
represented by the equation xTAx = k?

2. If xTAx is a quadratic form on Rn, what conditions must A satisfy for xTAx = k to
have positive values for x ≠ 0?

3. If xTAx is a quadratic form on Rn, what are its maximum and minimum values if
∥x∥ = 0?

Ellipse
Parabola
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A quadratic form in R2 arises in the equations of conic sections. If a conic section's
equation has no linear terms, it is called a central conic. Parabolas cannot be central
conics. Furthermore, if there are also no cross product terms, it is called a central
conic in standard position. The general equation of a conic in standard position is
ax2 + by2 + f = 0.

These are the important central conics in standard position:

Identifying Conic Sections

Approaching the first question stated earlier, to identify a conic from its quadratic
form:
0. Assumes quadratic form is in general form ax2 + 2bxy + cy2 = d

Positive Definite Quadratic Forms

We now consider the second question.

A quadratic form xTAx is said to be positive definite if xTAx > 0 for x ≠ 0, negative
definite if xTAx < 0 for x ≠ 0, and indefinite if xTAx has both positive and negative
values.

Hyperbola

x2

α2 + y2

β2 = 1,α > 0,β > 0
x2

α2 − y2

β2 = 1,α > 0,β > 0
y2

β2 + x2

α2 = 1,α > 0,β > 0

1. Write conic in matrix form xTAx + d = 0 where A = [ ]
a b

b c

2. Find eigenvalues of A
3. Find orthonormal bases for the eigenspaces and arrange as columns of a matrix P .
4. If the determinant is -1, swap columns.
5. Arrange the eigenvalues, in corresponding order of their orthonormal bases, as

columns in a diagonal matrix.
6. Substitute as change of base x′TAx′ where A is the matrix of eigenvalues, and

expand.
7. Place in quadratic form without cross product ax′2 + by′2 = −d.
8. To find the angle rotated through to find this result, substitute

. This matrix is very useful.P = [ ]
cos (θ) − sin (θ)

sin (θ) cos (θ)
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7.3.2  If A is a symmetric matrix, then:
(a)  xTAx is positive definite if and only if all eigenvalues of A are positive.
(b)  xTAx is negative definite if and only if all eigenvalues of A are negative.
(c)  xTAx is indefinite if and only if it has at least one eigenvalue of A is positive and at
least one is negative.

There are two more classifications, positive semidefinite if xTAx ≥ 0 for x ≠ 0 and
negative semidefinite if xTAx ≤ 0 for x ≠ 0, but are less important.

Note: positive definite and negative definite matrices are invertible.

Classifying Conic Sections Using Eigenvalues

If xTAx = k is an equation of a quadratic form, we can divide both sides by k to make
xTBx = 1 where B = ( 1

k
)A. The general equation of the conic of this new form is

λ1x
′2 + λ2y

′2 = 1, and by rearranging, we see that the lengths of the axes (from origin
to collision of axis with the conic) are 2/√λ1, 2/√λ2.

7.3.3  If A is a symmetric matrix, then:
(a)  xTAx = 1 represents an ellipse if A is positive definite.
(b)  xTAx = 1 has no graph if A is negative definite.
(c)  xTAx = 1 represents a hyperbola if A is indefinite.

Identifying Positive Definite Matrices

The k-th principal submatrix of an n × n matrix A is the matrix with dimensions k × k

consisting of the first k rows and columns of A.

7.3.4  If A is a symmetric matrix, then:
(a)  A is positive definite if and only if the determinant of all principal submatrices are
positive.
(b)  A is negative definite if and only if the determinants of the principal submatrices
alternate between positive and negative, starting with negative.
(c)  A is indefinite if and only if it is neither positive definite or negative definite, and
at least one principal submatrix has a positive determinant and one has a negative
determinant.

7.4: Optimization Using Quadratic Forms
Constrained Extremum Problems

This type of problem revolves around finding the maximum and minimum values of a
quadratic form xTAx with the constraint ∥x∥ = 1. Imagine an xyz 3 dimensional
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system with the quadratic form on it, and imagine the constraint as a circle with radius
1 on the xy plane. The maximum and minimum values of the form are the maximum
and minimum z-values on the circle.

7.3.4  Constrained Extremum Theorem: Let A be a symmetric n × n matrix whose
eigenvalues in order of decreasing size are λ1 ≥ λ2 ≥ ⋯ ≥ λn. Then:
(a)  The quadratic form xTAx has a maximum value of λ1 and a minimum value of λn,
both of which are obtained on the set of vectors for which ∥x∥ = 1.
(b)  The maximum value of xTAx occurs at an eigenvector corresponding to the
eigenvalue λ1.
(c)  The minimum value of xTAx occurs at an eigenvector corresponding to the
eigenvalue λn.

Constrained Extrema and Level Curves

Imagine an x-y-z plane with a function f(x, y). At a plane z = k for a constant k, the
curve on the x-y plane formed through the intersection of the plane and the function is
given by f(x, y) = k. These are called level curves.

The level curves of a quadratic form in R2 are given by xTAx = k. The largest values of
the quadratic form that intersect the unit circle in R2 will be the largest and smallest
values of k for which the graph of xTAx = k intersects the unit circle.

Relative Extrema of Functions of Two Variables

If a function f(x, y) has first order partial derivatives, then its relative maxima and
minima occur wherever fx(x, y) and fy(x, y) are both equal to zero. These are called
critical points of f.

Let us define a function D(x, y) = f(x, y) − f(x0, y0) where (x, y) are very close, but
different from (x0, y0). It is hard to find the sign of D.

7.4.3  Second Derivative Test: Suppose that (x0, y0) is a critical point of f(x, y) and
that f has continuous second-order partial derivatives in some circular region centered
at (x0, y0). Then:
(a)  f has a relative minimum at (x0, y0) if

fxx(x0, y0)fyy(x0, y0) − f 2
xy(x0, y0) > 0  and  fxx(x0, y0) > 0

(b)  f has a relative maximum at (x0, y0) if

fxx(x0, y0)fyy(x0, y0) − f 2
xy(x0, y0) > 0  and  fxx(x0, y0) < 0
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(c)  f has a saddle point at (x0, y0) if

fxx(x0, y0)fyy(x0, y0) − f 2
xy(x0, y0) < 0

(d)  The test is inconclusive if

fxx(x0, y0)fyy(x0, y0) − f 2
xy(x0, y0) = 0

We can make this easier with the properties of symmetric matrices. We form a
symmetric matrix

H(x, y) = [ ]

which is called the Hessian matrix of f. The determinant of the Hessian is

fxx(x, y)fyy(x, y) − fxy(x, y)2

which appears in 7.4.2.

7.4.4  Hessian Form of the Second Derivative Test: Suppose that (x0, y0) is a critical
point of f(x, y) and that f has continuous second-order partial derivatives in some
circular region centered at (x0, y0). If H(x0, y0) is the Hessian of f at (x0, y0), then:
(a)  f has a relative minimum at (x0, y0) if H(x0, y0) is positive definite.
(b)  f has a relative maximum at (x0, y0) if H(x0, y0) is negative definite.
(c)  f has a saddle point at (x0, y0) if H(x0, y0) is indefinite.
(d)  The test is inconclusive otherwise.

7.5: Hermitian, Unitary, and Normal Matrices
Hermitian and Unitary Matrices

If A is a complex matrix, the conjugate transpose of A is given by A∗ = AT

7.5.1  If k is a complex scalar and A and B are complex matrices whose sizes are such
that the stated operations can be performed, then:
(a)  (A∗)∗ = A

(b)  (A + B)∗ = A∗ + B∗

(c)  (A − B)∗ = A∗ − B∗

(d)  (kA)∗ =
–
kA∗

(e)  (AB)∗ = B∗A∗

A square matrix is said to be unitary if AA∗ = A∗A = I or equivalently A∗ = A−1, and
Hermitian if A∗ = A.

fxx(x, y) fxy(x, y)

fxy(x, y) fyy(x, y)

–
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The diagonal entries of a Hermitian matrix must always be real, and corresponding
entries across the main diagonal must be complex conjugates. The direct way to tell if a
matrix is unitary is to see if it satisfies A∗ = A−1.

The relationship u ⋅ v = vTu from Chapter 5 can be said as u ⋅ v = v∗u.

7.5.2  If A is a Hermitian matrix, then:
(a)  The eigenvalues of A must be real numbers.
(b)  Eigenvectors from different eigenspaces are orthogonal.

The following theorem provides a method to ascertain if a matrix is unitary without
finding the inverse.

7.5.3  If A is a n × n matrix with complex entries, then the following are equivalent:
(a)  A is unitary.
(b)  ∥Ax∥ = ∥x∥ for all x in Cn.
(c)  Ax ⋅ Ay = x ⋅ y for all x and y in Cn.
(d)  The column vectors of A form a orthonormal set in Cn with respect to the complex
Euclidean inner product.
(e)  The row vectors of A form a orthonormal set in Cn with respect to the complex
Euclidean inner product.

Unitary Diagonalizability

A square complex matrix A is unitarily diagonalizable if there is a unitary matrix P
such that P ∗AP = D is a complex diagonalizable matrix. Any such matrix P  is said to
unitarily diagonalize A.

7.5.4  Every n × n Hermitian matrix A has an orthonormal set of n eigenvectors. A is
unitarily diagonalized by any n × n matrix P  whose column vectors form an
orthonormal set of eigenvectors of A.

Unitarily diagonalizing a Hermitian matrix:

Skew-Symmetric and Skew-Hermitian Matrices

A square real matrix A is skew-symmetric if AT = −A, and a square complex matrix A
is skew-Hermitian if A∗ = −A.

–

1. Find a basis for each eigenspace of A.
2. Apply the Gram–Schmidt process to each of these bases to obtain orthonormal

bases for the eigenspaces.
3. Form the matrix P  whose column vectors are the basis vectors obtained in Step 2. It

will be unitary and unitarily diagonalize A.
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Skew-symmetric matrices must have zeroes on the main diagonal, and skew-Hermitian
matrices must have zeroes or pure complex numbers on the main diagonal.

Normal Matrices

A square complex matrix A is unitarily diagonalizable if and only if AA∗ = A∗A.
Matrices with this property are called normal. The following types of matrices are
normal:

8. General Linear Transformations

8.1: General Linear Transformations
If T : V → W  is a mapping from a vector space V  to a vector space W , then T  is called
a linear transformation from V  to W  if the following two properties hold for all
vectors u and v in V  and all scalars k:

8.1.1  If T : V → W  is a linear transformation, then:
(a)  T (0) = 0

(b)  T (u − v) = T (u) − T (v) for all u, v in V .
(c)  T (−u) = −T (u) for all u in V .

The mapping T : V → W  defined by T (v) = 0 for every v in V  is called the zero
transformation. I : V → V  defined by I(v) = v is called the identity operator on V .

The linear operator T : V → V  defined by T (x) = cx for every x in V  and scalar c is
called the contraction of V  if 0 < c < 1, and the dilation of V  if c > 1.

Complex matrices
Hermitian matrices
Skew-Hermitian matrices
Unitary matrices

Real matrices
Symmetric matrices
Skew-symmetric matrices
Orthogonal matrices

T (ku) = kT (u) [Homogenity property]

T (u + v) = T (u) + T (v) [Additivity property]

In the special case V = W , the linear transformation T  is called a linear operator
on V .
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Finding Linear Transformations from Images of Basis Vectors

8.1.2  Let T : V → W  is a linear transformation, for which the vector space V  is finite-
dimensional. If S = {v1, v2, … , vn} is a basis for V , then the image of any vector v in
V  can be expressed as:

T (v) = c1T (v1) + c2T (v2) + ⋯ + cnT (vn)

where c1, c2, … , cn are the coefficients required to express v as a linear transformation
of the vectors in basis S.

Kernel and Range

If T : V → W  is a linear transformation, then the set of vectors in V  that T  maps into 0
is called the kernel of T  and is denoted by ker(T ). The set of all vectors in W  that are
images under T  of at least one vector in V  is called the range of T  and is denoted by
R(T ).

8.1.3  Let T : V → W  is a linear transformation.
(a)  The kernel of T  is a subspace of W .
(b)  The range of T  is a subspace of W .

Rank and Nullity of Linear Transformations

Let T : V → W  be a linear transformation. In the case that the range of T  is finite-
dimensional its dimension is called the rank of T , and if the kernel is finite-
dimensional, its dimension is called the nullity of T .

8.1.4  Let T : V → W  is a linear transformation with two finite-dimensional vector
spaces V  and W , then the range of T  is finite-dimensional, and
rank(T ) + nullity(T ) = dim(V ).

8.2: Compositions and Inverse Transformations

If TA : Rn → Rm is multiplication by the m × n matrix A, then the kernel of TA is
the null space of A and the range is the column space of A.
Let T : V → W  be the zero transformation. ker(T ) = V , and R(T ) = {0}.
Let I : V → V  be the identity operator. ker(I) = {0}, and R(I) = V .
Let T : R3 → R3 be the orthogonal projection on the xy plane. ker(T ) is the set of
points of form (0, 0, z), and R(T ) is the set of points of form (x, y, 0).
Let T : R2 → R2 be the linear operator that rotates every vector in the xy plane
through the angle θ. ker(T ) = {0}, and R(T ) = R2.
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One-to-One and Onto

If T : V → W  is a linear transformation, then T  is one-to-one if T  maps distinct
vectors in V  into distinct vectors in W .

If T : V → W  is a linear transformation, then T  is onto W  if every vector in W  is an
image of at least one vector in V .

8.2.1  If T : V → W  is a linear transformation, the following statements are equivalent.
(a)  T  is one-to-one.
(b)  ker(T ) = {0}.

One-to-One Onto

Rotation operators on Rn Yes Yes

Orthogonal projections on Rn No No

Yes Yes

Yes Yes

Yes No

D : C1(−∞, ∞) → F(−∞, ∞) No Yes

proving these results is left as an exercise, or just read the examples in the textbook if you want.
i'm not a cop

8.2.2  If T : V → W  is a linear transformation, the following statements are equivalent.
(a)  T  is one-to-one.
(b)  ker(T ) = {0}.
(c)  T  is onto (R(T ) = W ).

Matrix Transformations Revisited

8.2.3  If TA : Rn → Rm is a linear transformation, then
(a)  TA is one-to-one if and only if the columns of A are linearly independent.

T : P3 → R4

T (a + bx + cx2 + dx3) = (a, b, c, d)

T : M22 → R4

T ([ ]) = (a, b, c, d)
a b

c d

T : Pn → Pn+1

T (p) = T (p(x)) = xp(x)
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(b)  TA is onto if and only if the columns of A span Rn.

8.2.4  For square matrix A with no duplicate rows/columns, all of these statements are
equivalent:
(a) A is invertible.
(b) Ax = 0 has only the trivial solution.
(c)  The reduced row echelon form of A is In.
(d) A can be expressed as a product of elementary matrices.
(e) Ax = b is consistent for every n × 1 matrix b.
(f) Ax = b has exactly one solution for every n × 1 matrix b.
(g)  det(A) ≠ 0.

(h)  The column vectors of A are linearly independent.
(i)  The row vectors of A are linearly independent.
(j)  The column vectors of A span Rn.
(k)  The row vectors of A span Rn.
(l)  The column vectors of A form a basis for Rn.
(m)  The row vectors of A form a basis for Rn.
(n)  A has rank n.
(o)  A has nullity 0.
(p)  The orthogonal complement of the null space of A is Rn.
(q)  The orthogonal complement of the row space of A is {0}.
(r)  λ = 0 is not an eigenvalue of A.
(s)  ATA is invertible.
(t)  The kernel of TA is {0}.
(u)  The range of TA is Rn.
(v)  TA is one-to-one.

Inverse Linear Transformations

The inverse of multiplication by A is multiplication by A−1.

If T : V → W  is a linear transformation and w is a vector in R(T ) (the range of T ), the
fact that T  is one to one means that there exists a transformation using a vector v from
V  such that T (v) = w.

Now we define a transformation T −1, that maps w → v. Thus, T −1 : R(T ) → V  is a
linear transformation. Note that T  and T −1 cancel one another out when used in
succession.

Composition of Linear Transformations
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If T1 : U → V  and T2 : V → W  are linear transformations, then the composition of T2

with T1 is denoted T2 ∘ T1 and defined by (T2 ∘ T1)(u) = T2(T1(u)) where u is a
function in U .

8.2.5  If T1 : U → V  and T2 : V → W  are linear transformations, then
(T2 ∘ T1) : U → W  is also a linear transformation.

8.2.6  If T1 : U → V  and T2 : V → W  are one-to-one linear transformations, then
(a)  T2 ∘ T1 is one-to-one.
(b)  (T2 ∘ T1)−1 = T −1

2 ∘ T −1
1 .

8.3: Isomorphism
Isomorphism

A linear transformation T : V → W  that is both one-to-one and onto is said to be an
isomorphism, and W  is isomorphic to V .

Essentially, isomorphism means that two different vector spaces share the same
algebraic form and their vector operations are conducted in the same fashion, even if
the types of objects in the spaces may be different.

8.3.1  Every n-dimensional vector space is isomorphic to Rn.

8.3.2  If S is an ordered basis for a vector space V , then the coordinate map u
T
⟶ (u)S

is an isomorphism between V  and Rn.

Inner Product Space Isomorphisms

Regular isomorphisms only preserve algebraic structure. To preserve geometric
structure, an isomorphism will also preserve inner products. We define T : V → W  an
inner product space isomorphism if ⟨T (u),T (v)⟩ = ⟨u, v⟩ for all u, v in V .

8.3.3  If S = {v1, v2, … , vn} is an ordered orthonormal basis for a real n-dimensional
inner product space V , then the coordinate map

u
T

→ (u)
s

is an inner product space isomorphism between V  and the vector space Rn with the
Euclidean inner product.

8.4: Matrices for General Linear Transformations
Matrices of Linear Tranformations
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Suppose that:

Our goal is to find some matrix A such that it maps [x]B into [T (x)]B for each x in V .

Finding T (x) Indirectly

We need to find a m × n matrix A with the property that A[x]B = [T (x)]B′ . In order for
this to be true, let's establish it for the basis vectors of V  (remember this formula must
succeed for all vectors x in the vector space V ). The coordinates of the basis vectors [ui]

with respect to B are standard basis vectors:

[u1]B = , [u2]B = , …

If we now multiply these by the entries of A, we get the columns of A. Each of these
column matrices is equal to a corresponding coordinate vector:

= [T (u1)]B′ , = [T (u2)]B′

We now construct A such that its columns are the coordinate vectors of T (ui) for each
basis vector ui. We call A the matrix for T  relative to the bases B and B′ and denote it
by the symbol [T ]B′,B. Therefore, we can make the starting equation a little prettier
with

V  is an n-dimensional vector space
B is a basis for V

W  is an m-dimensional vector space
B

′  is a basis for W

T : V → W  is a linear transformation
For each vector in V , the coordinate vectors for x and T (x) are [x]B and [T (x)]B
respectively.

1. Compute the coordinate vector [x]B

2. Multiply [x]B on the left by A to produce [T (x)]B

3. Reconstruct T (x) from the coordinate vector [T (x)]B

⎡⎢⎣1
0

0

⋮
0

⎤⎥⎦ ⎡⎢⎣0
1

0

⋮
0

⎤⎥⎦⎡⎢⎣a11

a21

⋮

am1

⎤⎥⎦ ⎡⎢⎣a12

a22

⋮

am2
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[T ]B′,B[x]B = [T (x)]B′

such that the Bs look like they cancel out.

Matrices of Linear Operators

In the special case that V = W , the bases will be equal B = B′ when finding T . In this
case, we call the matrix the matrix for T  relative to the basis B and is denoted by
simply [T ]B instead.

More informally, we can say that the matrix for T , when multiplied by the coordinate
vector for x, produces the coordinate vector for T (x).

Matrices of Identity Operators

If V  is n-dimensional, then the matrix for the identity operator I relative to any basis B
for a vector space V  is the n × n identity matrix.

Matrices of Compositions and Inverse Transformations

The following are generalizations of previous results:

8.4.1  If T1 : U → V  and T2 : V → W  are linear transformations and if B,Bn,Bm are
bases for U ,V ,W  respectively, then

[T2 ∘ T1]B′,B = [T2]B′,B′′ [T1]B′′,B

8.4.2  If T : V → V  is a linear operator, and if B is a basis for V , then the following are
equivalent:
(a)  T  is one-to-one.
(b)  [T ]B is invertible.
(b)  When both (a) and (b) are true, [T −1]B = [T ]−1

B
 is true.
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